Skip to main content

Landscape- and local-level variables affect monarchs in Midwest grasslands

Abstract

Context

It is estimated that over one billion milkweed stems need to be restored to sustain the eastern North American migratory population of monarch butterflies; where and in what context the stems should be placed on the landscape is key to addressing habitat deficits.

Objectives

We assessed how the amount of appropriate habitat surrounding a particular patch of monarch habitat affects monarch presence and reproduction. To ensure that habitat restoration efforts are targeted towards areas that maximize monarch population growth, it is important to understand the effects of landscape heterogeneity on monarch occurrence in habitat patches (i.e. grasslands with milkweeds) across the landscape.

Methods

Over two summers (2018–2019), we surveyed monarch adults, larvae, and eggs at sixty grassland sites in Wisconsin that varied in patch size and landscape context (proportion grassland, forest edge density, and road density). We also estimated milkweed density and floral richness to characterize local patch quality.

Results

Adult monarch abundance was highest at patches with the lowest proportion of surrounding grassland and lowest road density, and was heavily influenced by patch quality variables. Egg and larva density in a patch increased with milkweed density and floral richness within a patch. Patch size was unrelated to monarch abundance.

Conclusions

These results suggest that optimal sites for monarch habitat restoration are within landscapes which contain little habitat and that high milkweed density and floral richness and abundance should be conservation goals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data and materials available upon request or at https://doi.org/10.5066/P9BERZ62.

Code availability

Code available upon request or at https://doi.org/10.5066/P91T59BO.

References

  1. Altizer A, Oberhauser K (1999) Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus). J Invertebr Pathol 74(1):76–88

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Bartoń K (2019) MuMIn: multi-model inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn

  3. Bender DJ, Tischendorf L, Fahrig L (2003) Using patch isolation metrics to predict animal movement in binary landscapes. Landsc Ecol 18(1):17–39

    Article  Google Scholar 

  4. Bergman K-O, Dániel-Ferreira J, Milberg P, Öckinger E, Westerberg L (2018) Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landsc Ecol 33:2189–2204

    Article  Google Scholar 

  5. Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520. https://doi.org/10.1242/jeb.048728

  6. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9(2):378–400

    Article  Google Scholar 

  7. Brudvig LA (2011) The restoration of biodiversity: where has research been and where does it need to go? Am J Bot 98:549–558

    PubMed  Article  PubMed Central  Google Scholar 

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag New York, Inc., New York

    Google Scholar 

  9. Cariveau AB, Holt HL, Ward JP, Lukens L, Kasten K, Thieme J, Caldwell W, Tuerk K, Baum KA, Drobney P, Drum RG, Grundel R, Hamilton K, Hoang C, Kinkead K, McIntyre J, Thogmartin WE, Turner T, Weiser EL, Oberhauser K (2019) The integrated monarch monitoring program: from design to implementation. Front Ecol Evol. https://doi.org/10.3389/fevo.2019.00167

    Article  Google Scholar 

  10. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    PubMed  Article  Google Scholar 

  11. Curtis RJ, Brereton TM, Dennis RLH, Carbone C, Isaac NJB (2015) Butterfly abundance is determined by food availability and is mediated by species traits. J Appl Ecol 52:1676–1684

    Article  Google Scholar 

  12. Davis JD, Debinski DM, Danielson BJ (2007) Local and landscape effect on the butterfly community in fragmented Midwest USA prairie habitats. Landsc Ecol 22:1341–1354

    Article  Google Scholar 

  13. Dewitz J (2019) National Land Cover Database (NLCD) 2016 products: U.S. Geological Survey data release. https://doi.org/10.5066/P96HHBIE

  14. Dinsmore S, Vanausdall R, Murphy K, Kinkead K, Frese P (2019) Patterns of monarch site occupancy and dynamics in Iowa. Front Ecol Evol 7:169

    Article  Google Scholar 

  15. Ducatez S, Humeau A, Congretel M, Fréville H, Baguette M (2014) Butterfly species differing in mobility show different structures of dispersal-related syndromes in the same fragmented landscape. Ecography 37:378–389

    Article  Google Scholar 

  16. Esri Inc (2018) ArcGIS desktop (version 10.6). Environmental Systems Research Institute, Redlands, CA

  17. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  18. Garlick KM (2007) Visual and olfactory sensory systems employed by monarch butterflies (Danaus plexippus) to locate their milkweed host plants (M.Sc. thesis)

  19. Grant TJ, Parry HR, Zalucki MP, Bradbury SP (2018) Predicting monarch butterfly (Danaus plexippus) movement and egg-laying with a spatially-explicit agent-based model: the role of monarch perceptual range and spatial memory. Ecol Model 374:37–50

    Article  Google Scholar 

  20. Grez AA, González RH (1995) Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia 103:471–474

    CAS  PubMed  Article  Google Scholar 

  21. Habel JC, Ulrich W, Biburger N, Seibold S, Schmitt T (2019) Agricultural intensification drives butterfly decline. Insect Conserv Divers 12:289–295

    Google Scholar 

  22. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Hambäck PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited: density-area relations in sources and sinks. Ecol Lett 8(10):1057–1065

    Article  Google Scholar 

  24. Hartig F (2020) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package, version 0.3.2.0. http://florianhartig.github.io/DHARMa/

  25. Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J (2019) Landscapemetrics: an open-source R tool to calculate landscape metrics. Version 1.2.2. Ecography 42:1648–1657

    Article  Google Scholar 

  26. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65(6):725–735

    Article  Google Scholar 

  27. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  28. Howard E, Davis AK (2015) Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann Entomol Soc Am 108:664–669

    Article  Google Scholar 

  29. Karp D, Chaplin-Kramer R, Meehan T, Poppenborg Martin E, Declerck F, Grab H, Gratton C, Hunt L, Larsen A, Martínez-Salinas A, O’Rourke M, Rusch A, Poveda K, Jonsson M, Rosenheim J, Schellhorn N, Tscharntke T, Wratten S, Zhang W, Zou Y (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci USA 115:201800042

    Article  CAS  Google Scholar 

  30. Kasten K, Stenoien C, Caldwell W, Oberhauser KS (2016) Can roadside habitat lead monarchs on a route to recovery? J Insect Conserv 20(6):1047–1057

    Article  Google Scholar 

  31. Kleijn D, Linders TEW, Stip A, Biesmeijer JC, Wäckers FL, Bukovinszky T (2018) Scaling up effects of measures mitigating pollinator loss from local- to landscape-level population responses. Methods Ecol Evol 9:1727–1738

    Article  Google Scholar 

  32. Lüdecke D, Makowski D, Waggoner P, Patil I (2020) Assessment of regression models performance. CRAN. https://doi.org/10.5281/zenodo.3952174

  33. Lukens L, Kasten K, Stenoien C, Cariveau A, Caldwell W, Oberhauser K (2020) Monarch habitat in conservation grasslands. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00013

    Article  Google Scholar 

  34. Matter SF, Roland J (2002) An experimental examination of the effects of habitat quality on the dispersal and local abundance of the butterfly Parnassius smintheus. Ecol Entomol 27:308–316

    Article  Google Scholar 

  35. Matter SF, Roslin T, Roland J, Kaitala V (2005) Predicting immigration of two species in contrasting landscapes: effects of scale, patch size and isolation. Oikos 111:359–367

    Article  Google Scholar 

  36. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194

    Article  Google Scholar 

  37. Oberhauser K (2012) Tachinid flies and monarch butterflies: citizen scientists document parasitism patterns over broad spatial and temporal scales. Am Entomol 58(1):19–22

    Article  Google Scholar 

  38. Oberhauser KS, Solensky MJ (2004) Monarch butterfly biology & conservation. Cornell University Press, Ithaca

    Google Scholar 

  39. Oberhauser KS, Prysby MD, Mattila HR, Stanley-Horn DE, Sears MK, Dively G, Olson E, Pleasants JM, Lam W-KF, Hellmich RL (2001) Temporal and spatial overlap between monarch larvae and corn pollen. Proc Natl Acad Sci USA 98:11913

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Oberhauser K, Wiederholt R, Diffendorfer JE, Semmens D, Ries L, Thogmartin WE, Lopez-Hoffman L, Semmens B (2017) A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol Entomol 42:51–60

    Article  Google Scholar 

  41. Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534

    PubMed  Article  Google Scholar 

  42. Otway SJ, Hector A, Lawton JH (2005) Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol 74:234–240

    Article  Google Scholar 

  43. Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  Google Scholar 

  44. Pleasants JM (2015) Monarch butterflies and agriculture. Monarchs in a changing world: biology and conservation of an iconic butterfly. Cornell University Press, Ithaca, pp 169–178

    Google Scholar 

  45. Pleasants J (2017) Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population. Insect Conserv Divers 10(1):42–53

    Article  Google Scholar 

  46. Pleasants JM, Oberhauser KS (2013) Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv Divers 6(2):135–144

    Article  Google Scholar 

  47. Pocius VM, Debinski DM, Pleasants JM, Bidne KG, Hellmich RL (2018) Monarch butterflies do not place all of their eggs in one basket: oviposition on nine Midwestern milkweed species. Ecosphere 9:e02064

    Article  Google Scholar 

  48. Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biol Conserv 12(2):115–134

    Article  Google Scholar 

  49. Potts SG, Woodcock BA, Roberts SPM, Tscheulin T, Pilgrim ES, Brown VK, Tallowin JR (2009) Enhancing pollinator biodiversity in intensive grasslands. J Appl Ecol 46:369–379

    Article  Google Scholar 

  50. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  51. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70:840–852

    Article  Google Scholar 

  52. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43(1):95–124

    Article  Google Scholar 

  53. Saunders SP, Ries L, Oberhauser KS, Thogmartin WE, Zipkin EF (2018) Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography 41:278–290

    Article  Google Scholar 

  54. Schultz CB, Crone EE (2008) Note: using ecological theory to advance butterfly conservation. Israel J Ecol Evol 54:63–68

    Article  Google Scholar 

  55. Shono H (2008) Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish Res 93(1):154–162

    Article  Google Scholar 

  56. Stenoien C, Nail KR, Oberhauser KS (2015) Habitat productivity and temporal patterns of monarch butterfly egg densities in the eastern United States. Ann Entomol Soc Am 108:670–679

    Article  Google Scholar 

  57. Stenoien C, Nail KR, Zalucki JM, Parry H, Oberhauser KS, Zalucki MP (2018) Monarchs in decline: a collateral landscape-level effect of modern agriculture. Insect Sci 25(4):528–541

    PubMed  Article  Google Scholar 

  58. Stephens AEA, Myers JH (2012) Resource concentration by insects and implications for plant populations. J Ecol 100:923–931

    Article  Google Scholar 

  59. Thogmartin WE, Diffendorfer JE, López-Hoffman L, Oberhauser K, Pleasants J, Semmens BX, Semmens D, Taylor OR, Wiederholt R (2017a) Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5:e3221

    PubMed  PubMed Central  Article  Google Scholar 

  60. Thogmartin WE, López-Hoffman L, Rohweder J, Diffendorfer J, Drum R, Semmens D, Black S, Caldwell I, Cotter D, Drobney P, Jackson LL, Gale M, Helmers D, Hilburger S, Howard E, Oberhauser K, Pleasants J, Semmens B, Taylor O, Ward P, Weltzin JF, Wiederholt R (2017b) Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck.’ Environ Res Lett 12(7):074005

    Article  Google Scholar 

  61. Thogmartin WE, Wiederholt R, Oberhauser K, Drum RG, Diffendorfer JE, Altizer S, Taylor OR, Pleasants J, Semmens D, Semmens B, Erickson R, Libby K, Lopez-Hoffman L (2017c) Monarch butterfly population decline in North America: identifying the threatening processes. R Soc Open Sci 4(9):170760

    PubMed  PubMed Central  Article  Google Scholar 

  62. Thomas CD, Hanski I (1997) Butterfly metapopulations. Metapopulation biology. In: Hanski I, Gilpin ME (eds) Ecology, genetics, and evolution, Academic Press, San Diego, CA, pp 359–386

  63. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond Ser B 268:1791–1796

    CAS  Article  Google Scholar 

  64. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  65. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002). Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol Appl 12:354–363. https://doi.org/10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2

  66. United States Census Bureau (2019) TIGER/line shapefiles technical documentation. 1–138. https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2019/TGRSHP2019_TechDoc.pdf

  67. Walker K (2020) tigris: load census TIGER/line shapefiles. R package version 0.9.4. https://CRAN.R-project.org/package=tigris

  68. Walton RK, Brower LP, Davis AK (2005) Long-term monitoring and fall migration patterns of the monarch butterfly in Cape May, New Jersey. Ann Entomol Soc Am 98:682–689

    Article  Google Scholar 

  69. Wepprich T, Adrion JR, Ries L, Wiedmann J, Haddad NM (2019) Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14:e0216270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11:1069–1080

    Article  Google Scholar 

  71. Zalucki MP (1983) Simulation of movement and egg laying in Danaus plexippus (Lepidoptera: Nymphalidae). Res Popul Ecol 25:353–365

    Article  Google Scholar 

  72. Zalucki MP, Kitching RL (1982) The analysis and description of movement in adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–197

    Article  Google Scholar 

  73. Zalucki MP, Parry HR, Zalucki JM (2016) Movement and egg laying in monarchs: to move or not to move, that is the equation. Austral Ecol 41(2):154–167

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service. Thank you to the U.S. Fish & Wildlife Service, The Nature Conservancy, Wisconsin Department of Natural Resources, and The Prairie Enthusiasts for permitting land surveys. We thank Andrew Strassman for providing comments on this manuscript. Claire Stevens, Veronica Weaver, Reed Junco, Patrick Kincade, Jane Blomberg, Nathan Grosse, Cassandra Skaggs, Jason Barstke, Kaitlynn Hietpas, Laura Williams, Galen Cotting, Kelsey Stalker, Amos Kaldor, Michelle Chung, Chengkai Guo, Olivia de Castro, and Kayla Foulk performed the surveys, which took place on the ancestral homelands of the Ho-Chunk, Ojibwe, Potawatomie, Dakota, and Menominee peoples. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. The views expressed in this article are the authors’ own and do not necessarily represent the views of the U.S. Fish and Wildlife Service or the U.S. Geological Survey.

Funding

The research leading to these results received funding from the U. S. Geological Survey under Agency Project Number G17AC00393.

Author information

Affiliations

Authors

Contributions

KO and CG contributed to the study conception and design. Material preparation, data collection and analysis were performed by ASB. The first draft of the manuscript was written by ASB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anna Skye Bruce.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Informed consent

The authors hereby consents to publication of this work in any and all Landscape Ecology publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruce, A.S., Thogmartin, W.E., Trosen, C. et al. Landscape- and local-level variables affect monarchs in Midwest grasslands. Landscape Ecol (2021). https://doi.org/10.1007/s10980-021-01341-4

Download citation

Keywords

  • Monarch
  • Landscape
  • Restoration
  • Ecology
  • Local vs. landscape effects
  • Patch size