Skip to main content

Advertisement

Log in

Sentinel-2 images reveal functional biophysical heterogeneities in crop mosaics

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Identifying landscape structure and understanding its functions are crucial for biological control. However, the relationship between the crop mosaic phenological heterogeneity and crop phenology at the field scale remains a blind spot. This hinders the understanding of crop dynamics and associated biodiversity. Remote sensing images are commonly used in landscape ecology because they allow for regular fine-scale monitoring of large areas.

Objective

The objective of this study was to understand the influence of biophysical heterogeneity of the crop mosaic on crop phenology and biodiversity using optical satellite images.

Methods

Indicators of wheat phenology and biophysical heterogeneity were derived from Sentinel-2 images using the Weighted Difference Vegetation Index (WDVI). A landscape gradient was studied in 2017 and 2018 using six study sites in Brittany, Picardy (France) and Wallonia (Belgium). First, we analyzed relationships among the crop mosaic, landscape grain and biophysical heterogeneity. Second, we studied effects of biophysical heterogeneity on wheat phenology. Last, we used WDVI to estimate the distribution of two carabid beetle species.

Results

The biophysical heterogeneity derived from WDVI correlated strongly with the crop mosaic gradient and landscape grain. Biophysical heterogeneity appeared to benefit wheat growth in fine-grain landscapes but disadvantage it in coarse-grain landscapes during the stem-extension and ripening periods. Biophysical heterogeneity estimated the distribution of carabid beetle species accurately.

Conclusion

The biophysical heterogeneity metric is continuous, consistent across locations and crop types and enables to address ecological issues using freely available satellite images covering the Earth. Future studies could use this metric to study the dynamics of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Air Papillon)

Fig. 2

© EuroGeographics for the administrative boundaries

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alford L, Tougeron K, Pierre J-S, Burel F, van Baaren J (2018) The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect. Insect Sci 25:905–915

    Article  PubMed  Google Scholar 

  • Alignier A, Solé-Senan XO, Robleño I, Fahrig L, Giralt D, Gross N, Martin J-L, Recasens J, Sirami C, Siriwardena, G, Baillod, A B, Bertrand C, Carrié R., Hass A, Henckel L, Miguet P, Badenhausser I, Baudry J, Batáry P (2020) Configurational crop heterogeneity increases within-field plant diversity. J Appl Ecol 57:654–663

    Article  Google Scholar 

  • Bastiaanssen WGM, Noordman EJM, Pelgrum H, Davids G, Thoreson BP, Allen RG (2005) SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J Irrig Drain Eng 131:85–93

    Article  Google Scholar 

  • Baudry J, Burel F (1984) “Remembrement”: landscape consolidation in France. Landsc Plan 11:235–241

    Article  Google Scholar 

  • Baudry J, Burel F, Aviron S, Martin M, Ouin A, Pain G, Thenail C (2003) Temporal variability of connectivity in agricultural landscapes: do farming activities help? Landsc Ecol 18:303–314

    Article  Google Scholar 

  • Bindlish R, Kustas WP, French AN, Diak GR, Mecikalski JR (2001) Influence of near-surface soil moisture on regional scale heat fluxes: model results using microwave remote sensing data from SGP97. IEEE Trans Geosci Remote Sens 39:1719–1728

    Article  Google Scholar 

  • Bouman BAM, van Kasteren HWJ, Uenk D (1992) Standard relations to estimate ground cover and LAI of agricultural crops from reflectance measurements. Eur J Agron 1:249–262

    Article  Google Scholar 

  • Boussard H, Baudry J (2017) Chloe2012: a software for landscape pattern analysis

  • Chaplin-Kramer R, O’Rourke M, Schellhorn N, Zhang W, Robinson BE, Gratton C.,Rosenheim JA, Tscharntke T, Karp D S (2019) Measuring what matters: actionable information for conservation biocontrol in multifunctional landscapes. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2019.00060

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297

    Article  Google Scholar 

  • Choudhury BJ, Idso SB, Reginato RJ (1987) Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric for Meteorol 39:283–297

    Article  Google Scholar 

  • Cleugh H (2002) Field measurements of windbreak effects on Airflow, turbulent exchanges and microclimates

  • Clevers JGPW (1988) The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens Environ 25:53–69

    Article  Google Scholar 

  • Clothier BE, Clawson KL, Pinter PJ, Moran MS, Reginato RJ, Jackson RD (1986) Estimation of soil heat flux from net radiation during the growth of alfalfa. Agric For Meteorol 37:319–329

    Article  Google Scholar 

  • Congalton R, Gu J, Yadav K, Thenkabail P, Ozdogan M, Congalton RG, Gu J, Yadav K, Thenkabail P, Ozdogan M (2014) Global land cover mapping: a review and uncertainty analysis. Remote Sens 6:12070–12093

    Article  Google Scholar 

  • Crowley MA, Cardille JA (2020) Remote sensing’s recent and future contributions to landscape ecology. Curr Landsc Ecol Rep 5:45–57

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manage 8:495–510

    Article  Google Scholar 

  • Friedl MA, McGwire KC, McIver DK (2001) An overview of uncertainty in optical remotely sensed data for ecological applications. In: Hunsaker CT, Goodchild MF, Friedl MA, Case TJ (eds) Spatial uncertainty in ecology: implications for remote sensing and GIS applications. Springer, New York, pp 258–283

    Chapter  Google Scholar 

  • Gagic V, Tscharntke T, Dormann CF, Gruber B, Wilstermann A, Thies C (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc B 278:2946–2953

    Article  PubMed  PubMed Central  Google Scholar 

  • George AD III, FRT, Faaborg J, (2015) Using LiDAR and remote microclimate loggers to downscale near-surface air temperatures for site-level studies. Remote Sens Lett 6:924–932

    Article  Google Scholar 

  • Gurr GM, Reynolds OL, Johnson AC, Desneux N, Zalucki MP, Furlong MJ, Li Z, Akutse KS, Chen J, Gao X, You M (2018) Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agron Sustain Dev 38:23

    Article  Google Scholar 

  • Hassan DA, Georgelin E, Delattre T, Burel F, Plantegenest M, Kindlmann P, Butet A (2013) Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators? Agric For Entomol 15:24–33

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. CRC Press

    Google Scholar 

  • Holland JM, Begbie M, Birkett T, Southway S, Thomas SR, Alexander CJ, Thomas CFG (2004) The spatial dynamics and movement of Pterostichus melanarius and P. madidus (Carabidae) between and within arable fields in the UK. Int J Ecol Environ Sci 30:35–53

    Google Scholar 

  • Holland JM, Thomas CFG, Birkett T, Southway S, Oaten H (2005) Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. J Appl Ecol 42:1140–1152

    Article  Google Scholar 

  • Inan HI, Sagris V, Devos W, Milenov P, van Oosterom P, Zevenbergen J (2010) Data model for the collaboration between land administration systems and agricultural land parcel identification systems. J Environ Manage 91:2440–2454

    Article  PubMed  Google Scholar 

  • Inglada J, Vincent A, Arias M, Tardy B, Morin D, Rodes I (2017) Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sens 9:95

    Article  Google Scholar 

  • Jacob F, Olioso A, Gu XF, Su Z, Seguin B (2002) Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model. Agronomie 22:669–680

    Article  Google Scholar 

  • Jamoneau A (2010) Relations entre les diversités alpha, béta et gamma de la flore vasculaire de fragments forestiers inclus dans des paysages agricoles contrastés. Doctoral dissertation, Université de Picardie Jules Verne

  • Joannon A, Torre A, Souchere V, Martin P (2004) The determinants of local collective action on erosive runoff. An analysis of farmers’ geographical proximities in Upper Normandy, France. Int J Sustain Dev 7:302–320

    Article  Google Scholar 

  • Kanzler M, Böhm C, Mirck J, Schmitt D, Veste M (2019) Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforest Syst 93:1821–1841

    Article  Google Scholar 

  • Kawatani T, Meroney RN (1970) Turbulence and wind speed characteristics within a model canopy flow field. Agric Meteorol 7:143–158

    Article  Google Scholar 

  • Kort J (1988) 9. Benefits of windbreaks to field and forage crops. Agr Ecosyst Environ 22–23:165–190

    Article  Google Scholar 

  • Kučera J, Podhrázská J, Karásek P, Papaj V (2020) The effect of windbreak parameters on the wind erosion risk assessment in agricultural landscape. J Ecol Eng 21:150–156

    Article  Google Scholar 

  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, R Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T (2020) caret: classification and regression training. Version 6.0-86. https://CRAN.R-project.org/package=caret

  • Lausch A, Blaschke T, Haase D, Herzog F, Syrbe RU, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol Model 295:31–41

    Article  Google Scholar 

  • Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agr Ecosyst Environ 166:94–101

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Soft 25. https://doi.org/10.18637/jss.v025.i01

  • Maes WH, Huete AR, Steppe K (2017) Optimizing the processing of UAV-based thermal imagery. Remote Sensing 9:476

    Article  Google Scholar 

  • McGarigal K, Tagil S, Cushman SA (2009) Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landsc Ecol 24:433–450

    Article  Google Scholar 

  • Mercier A, Betbeder J, Baudry J, Le Roux V, Spicher F, Lacoux J, Roger D, Hubert-Moy L (2020a) Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J Photogramm Remote Sens 163:231–256

    Article  Google Scholar 

  • Mercier A, Betbeder J, Rapinel S, Jegou N, Baudry J, Hubert-Moy L (2020b) Evaluation of Sentinel-1 and -2 time series for estimating LAI and biomass of wheat and rapeseed crop types. JARS 14:024512

    Google Scholar 

  • Metz M, Rocchini D, Neteler M (2014) Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail. Remote Sens 6:3822–3840

    Article  Google Scholar 

  • Olioso A, Chauki H, Courault D, Wigneron J-P (1999) Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens Environ 68:341–356

    Article  Google Scholar 

  • Pearson DL, Hawksworth DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Philos Trans R Soc Lond B Biol Sci 345:75–79

    Article  CAS  PubMed  Google Scholar 

  • Radoux J, Bourdouxhe A, Coos W, Dufrêne M, Defourny P (2019) Improving ecotope segmentation by combining topographic and spectral data. Remote Sens 11:354

    Article  Google Scholar 

  • Rouabah A, Villerd J, Amiaud B, Plantureux S, Lasserre-Joulin F (2015) Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins. Agric Ecosyst Environ 200:21–32

    Article  Google Scholar 

  • Ryszkowski L, Kędziora A (1987) Impact of agricultural landscape structure on energy flow and water cycling. Landsc Ecol 1:85–94

    Article  Google Scholar 

  • Schmugge TJ, Kustas WP, Humes KS (1998) Monitoring land surface fluxes using ASTER observations. IEEE Trans Geosci Remote Sens 36:1421–1430

    Article  Google Scholar 

  • TEAM, R. Core, TEAM, Maintainer R. Core, SUGGESTS, M. A. S. S., Matrix, SuppDists (2018) Package stats. The R Stats Package. The R Stats Package

  • Teil H (1975) Correspondence factor analysis: an outline of its method. Math Geol 7:3–12

    Article  Google Scholar 

  • Thenail C (2002) Relationships between farm characteristics and the variation of the density of hedgerows at the level of a micro-region of bocage landscape. Study case in Brittany, France. Agric Syst 71:207–230

    Article  Google Scholar 

  • Thenail C, Baudry J (2004) Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany. Agric Ecosyst Environ 101:53–72

    Article  Google Scholar 

  • Thomas C, Parkinson L, Griffiths GJK, Garcia AF, Marshall EJP (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J Appl Ecol 38:100–116

    Article  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard J-M, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Veste M, Littmann T, Kunneke A, du Toit B, Seifert T (2020) Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa. Plant Soil Environ 66:119–127

    Article  Google Scholar 

  • Winder L, Alexander CJ, Holland JM, Woolley C, Perry JN (2001) Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol Lett 4:568–576

    Article  Google Scholar 

  • With KA, Pavuk DM, Worchuck JL, Oates RK, Fisher JL (2002) Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12:52–65

    Article  Google Scholar 

  • Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D (2019) Advances in microclimate ecology arising from remote sensing. Trends Ecol Evol 34:327–341

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jean-Luc Roger in Rennes, the carabid team of EDYSAN in Amiens and Florence Heck in Louvain for the collection of carabid beetles. We thank H. Chrétien (airpap@air-papillon.com) for giving us permission to use the picture in Fig. 1.

Funding

This research was funded through the 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders ANR, MINECO and BELSPO, and was supported by the Kalideos project, funded by the CNES and the Zone Atelier Armorique project and a Ph.D. grant from the Ministry of Research for A. Mercier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Mercier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercier, A., Hubert-Moy, L. & Baudry, J. Sentinel-2 images reveal functional biophysical heterogeneities in crop mosaics. Landscape Ecol 36, 3607–3628 (2021). https://doi.org/10.1007/s10980-021-01331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01331-6

Keywords