Skip to main content

Potential risks to endemic conifer montane forests under climate change: integrative approach for conservation prioritization in southwestern China

Abstract

Context

Climate change is an important driver of habitat contraction and the loss of biodiversity. Species distribution models (SDMs) are used to assess the impacts of climate change and to identify priority conservation areas. Conservation assessment of endemic keystone species can foster the conservation of forest ecosystems.

Objectives

The objectives of this study are: (1) to evaluate the potential impacts of future climate scenarios (RCP 4.5 and RCP 8.5) on the extents of the habitat of eight endemic montane conifer species under dispersal scenarios (full and limited) and (2) to estimate the percentage loss in the area of occupancy (AOO) of the target species based on projected habitat suitability in order to assess their extinction risks and identify priority conservation areas.

Methods

Southwestern China is a global hotspot of conifer diversity and endemism. We used three ensemble-SDMs along with the International Union for Conservation of Nature’s Red List criteria to evaluate the impacts of climate change.

Results

Abies fabri, Abies fargesii var. faxoniana, Abies recurvata var. ernestii, and Picea neoveitchii are predicted to lose more than 90% of their AOOs under both the climate and dispersal scenarios. All of these species are predicted to become extinct or critically endangered except for Picea retroflexa and Abies squamata. It should be noted that while the changes in the AOOs changes were filtered for the current unsuitable man-made areas these predictions do not account for future land use changes.

Conclusions

Stable and suitable habitats are promising tools for in-situ conservation planning. Moreover, future conservation actions should give full consideration to the pattern of climate and land use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agudelo-Hz WJ, Urbina-Cardona N, Armenteras-Pascual D (2019) Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia. Perspect Ecol Conserv 17:206–219

    Google Scholar 

  2. Ahmadi M, Hemami MR, Kaboli M, Malekian M, Zimmermann NE (2019) Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Sci Rep 9:1–12

    Google Scholar 

  3. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  4. Chhetri PK, Gaddis KD, Cairns DM (2018) Predicting the suitable habitat of treeline species in the Nepalese Himalayas under climate change. Mt Res Dev 38:153–163

    Article  Google Scholar 

  5. Chunjing Z, Wenduo X, Shimizu H, Kaiyun W (2012) An overview on spruce forests in China. In: Oteng-Amoako AA (ed) New advances and contributions to forestry research. Intech Open, London

    Google Scholar 

  6. Dakhil MA, Xiong Q, Farahat EA, Zhang L, Pan K, Pandey B, Olatunji OA, Tariq A, Wu X, Zhang A, Tan X (2019) Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecol Indic 107:105559

    Article  Google Scholar 

  7. Dakhil MA, Halmy MWA, Hassan WA, El-Keblawy A, Pan K, Abdelaal M (2021a) Endemic Juniperus montane species facing extinction risk under climate change in southwest China: integrative approach for conservation assessment and prioritization. Biology 10:63

    PubMed  PubMed Central  Article  Google Scholar 

  8. Dakhil MA, Li J, Pandey B, Pan K, Liao Z, Olatunji OA, Zhang L, Eid EM, Abdelaal M (2021b) Richness patterns of endemic and threatened conifers in south-west China: topographic-soil fertility explanation. Environ Res Lett 16:034017

    CAS  Article  Google Scholar 

  9. Dauby G, Stévart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Lowry II PP, Schatz GE, Gereau RE, Couvreur TLP (2017b) ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Evol 7:11292–11303

    PubMed  PubMed Central  Article  Google Scholar 

  10. Della Rocca F, Bogliani G, Breiner FT, Milanesi P (2019) Identifying hotspots for rare species under climate change scenarios: improving saproxylic beetle conservation in Italy. Biodivers Conserv 28:433–449

    Article  Google Scholar 

  11. Duan B, Dong T, Zhang X, Zhang Y, Chen J (2014) Ecophysiological responses of two dominant subalpine tree species Betula albo-sinensis and Abies faxoniana to intra-and interspecific competition under elevated temperature. For Ecol Manage 323:20–27

    Article  Google Scholar 

  12. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  13. Fang J, Wang Z, Tang Z (2011) Atlas of woody plants in China: distribution and climate. Springer, New York

    Book  Google Scholar 

  14. Farjon A, Gardner M, Thomas P (2019) Conifer Database (version Jan 2014), in: Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt, RE, Decock, W, van Nieukerken, E, Zarucchi, J, Penev L (Eds.), Species 2000 ITIS Catalogue of Life: 2019 Annual Checklist. http://www.catalogueoflife.org/annual-checklist/2019/

  15. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  16. Fois M, Fenu G, Lombrana AC, Cogoni D, Bacchetta G (2015) A practical method to speed up the discovery of unknown populations using Species Distribution Models. J Nat Conserv 24:42–48

    Article  Google Scholar 

  17. Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Guo F, Lenoir J, Bonebrake TC (2018) Land-use change interacts with climate to determine elevational species redistribution. Nat Commun 9:1–7

    Article  CAS  Google Scholar 

  19. Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox‐Hughes P (2014) Climate projections for ecologists. Wiley Interdiscip Rev Clim Chang 5:621–637

    Article  Google Scholar 

  20. Hijmans RJ, van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Hijmans, MRJ (2015) Package ‘raster’. https://cran.r-project.org/web/packages/raster/index.html

  21. IPCC (2014) The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Summary for Policymakers. IPCC, Geneva

  22. IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria, Ver. 14. IUCN Standards and Petitions Subcommittee, IUCN, Gland, and Cambridge

  23. Kaky E, Gilbert F (2019) Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. J Arid Environ 170:103988

    Google Scholar 

  24. Kou X, Li Q, Liu S (2011) Quantifying species’ range shifts in relation to climate change: a case study of Abies spp. in China. PLoS ONE 6:e23115

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Lenoir J, Svenning J (2015) Climate-related range shifts–a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Article  Google Scholar 

  26. Liao Z, Zhang L, Nobis MP, Wu X, Pan K, Wang K, Dakhil MA, Du M, Xiong Q, Pandey B, Tian X (2020) Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers Distrib 26:352–367

  27. Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6:337–348

    Article  Google Scholar 

  28. Liu R, Wang C-J, He J, Zhang Z (2018) Analysis of geographical distribution of Abies in China under climate change. Bull Bot Res 38:37–46

    Google Scholar 

  29. López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Centres of plant endemism in China: places for survival or for speciation? J Biogeogr 38:1267–1280

    Article  Google Scholar 

  30. Lu L-M, Mao L-F, Yang T, Ye J-F, Liu B, Li H-L, Sun M, Miller JT, Mathews S, Hu H-H, Niu Y-T, Peng D-X, Chen Y-H, Smith SA, Chen M, Xiang K-L, Le C-T, Dang V-C, Lu A-M, Soltis PS, Soltis DE, Li J-H, Chen Z-D (2018) Evolutionary history of the angiosperm flora of China. Nature 554:234–238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor CRAIG, Akçakaya HR, Leader-Williams NIGEL, Stuart SN (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442

    PubMed  Article  PubMed Central  Google Scholar 

  32. Meynard CN, Leroy B, Kaplan DM (2019) Testing methods in species distribution modelling using virtual species: what have we learnt and what are we missing? Ecography 42:2021–2036

    Article  Google Scholar 

  33. Naimi B (2015) usdm: uncertainty analysis for species distribution models. R package version 1.1–15. R Doc http://www.rdocu-mentationorg/packages/usdm

  34. Naimi B, Araújo MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (cop) 39:368–375

    Article  Google Scholar 

  35. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwel RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:1

    Article  CAS  Google Scholar 

  36. Ritchie H, Roser M, (2019) CO2 and other greenhouse gas emissions. https://www.ourworldindata.org/co2-and-other-greenhouse-gas-emissions

  37. Román-Palacios C, Wiens JJ (2020) Recent responses to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci 117:4211–4217

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Selwood KE, McGeoch MA, Mac Nally R (2015) The effects of climate change and land-use change on demographic rates and population viability. Biol Rev 90:837–853

    PubMed  Article  PubMed Central  Google Scholar 

  39. Shao YZ, Zhang XC, Phan LK, Xiang QP (2017) Elevation shift in abies mill. (pinaceae) of subtropical and temperate China and Vietnam—corroborative evidence from cytoplasmic DNA and ecological niche modeling. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00578

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shuhuai HE, Yongzheng MA, Maochang L et al (2017) Study on the distribution and community characteristics of the endangered plant Picea neoveitchii Mast. in Hubei Province. Asian Agric Res 9:31–35

    Google Scholar 

  41. Song Y, Jin L, Wang H (2018) Vegetation changes along the Qinghai-Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens 10:95

    Article  Google Scholar 

  42. Tang CQ (2015) The subtropical vegetation of southwestern China: plant distribution, diversity and ecology. Springer, New York

    Book  Google Scholar 

  43. Taylor PJ, Ogony L, Ogola J, Baxter RM (2017) South African mouse shrews (Myosorex) feel the heat: using species distribution models (SDMs) and IUCN Red List criteria to flag extinction risks due to climate change. Mammal Res 62:149–162

    Article  Google Scholar 

  44. Thuiller W, Guéguen M, Renaud J et al (2019) Uncertainty in ensembles of global biodiversity scenarios. Nat Commun 10:1–9

    CAS  Article  Google Scholar 

  45. Tuanmu M, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob Ecol Biogeogr 23:1031–1045

    Article  Google Scholar 

  46. Ul Hasson S, Pascale S, Lucarini V, Böhner J (2016) Seasonal cycle of precipitation over major river basins in South and Southeast Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos Res 180:42–63

    Article  Google Scholar 

  47. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Wan J-Z, Wang C-J, Yu F-H (2017) Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Clim Change 144:303–316

    Article  Google Scholar 

  49. Wang L, Chen W (2014) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34:2059–2078

    Article  Google Scholar 

  50. Wang W, Jia M, Wang G et al (2017) Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. For Ecol Manage 402:135–144

    Article  Google Scholar 

  51. Warren R, VanDerWal J, Price J et al (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Chang 3:678–682

    Article  Google Scholar 

  52. Wu T, Song L, Li W et al (2014) An overview of BCC climate system model development and application for climate change studies. J Meteorol Res 28:34–56

    Google Scholar 

  53. Xu W, Xiao Y, Zhang J, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu J, Polasky S et al (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proc Natl Acad Sci 114:1601–1606

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Yan Y, Tang Z (2019) Protecting endemic seed plants on the Tibetan Plateau under future climate change: migration matters. J Plant Ecol 12:962–971

    Article  Google Scholar 

  55. Yu H, Deane DC, Sui X et al (2019) Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Glob Ecol Biogeogr 28:131–144

    Article  Google Scholar 

  56. Zhang Z, Mammola S, Xian W, Zhang H (2020) Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers Distrib 26:126–137

    Article  Google Scholar 

  57. Zhang D, Katsuki T, Rushforth K (2019) Picea neoveitchii, from the website: ‘Threatened Conifers of The World’. https://threatenedconifers.rbge.org.uk/conifers/picea-neoveitchii

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2016YFC0502101) and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0303). M. A. Dakhil thankfully acknowledges the China Scholarship Council (CSC No. 2017GXZ010412) for international PhD scholarship. Also, this research was funded by King Khalid University under Grant Number RGP. 1/60/42.

Author information

Affiliations

Authors

Contributions

MAD and KP conceived the idea. MAD and RFE-B performed the statistical, spatial, and modelling analyses. MAD and MWAH wrote the draft of the manuscript. MAD, KP, MWAH, and EME revised and improved the manuscript. All of the authors contributed substantially to the data collection.

Corresponding authors

Correspondence to Mohammed A. Dakhil or Kaiwen Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 556 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakhil, M.A., Halmy, M.W.A., Liao, Z. et al. Potential risks to endemic conifer montane forests under climate change: integrative approach for conservation prioritization in southwestern China. Landscape Ecol 36, 3137–3151 (2021). https://doi.org/10.1007/s10980-021-01309-4

Download citation

Keywords

  • Ensemble modelling
  • IUCN Red List
  • Endemic alpine species
  • Impacts of global warming
  • Biodiversity hotspot
  • Southwestern China