Skip to main content

Advertisement

Log in

The influence of landscape spatial configuration on nitrogen and phosphorus exports in agricultural catchments

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Nitrogen (N) and phosphorus (P) exports from rural landscapes can cause eutrophication of inland and coastal waters. Few studies have investigated the influence of the spatial configuration of nutrient sources—i.e. the spatial arrangement of agricultural fields in headwater catchments—on N and P exports.

Objectives

This study aimed to (1) assess the influence of the spatial configuration of nutrient sources on nitrate (NO3) and total phosphorus (TP) exports at the catchment scale, and (2) investigate how relationships between landscape composition (% agricultural land-use) and landscape configuration vary depending on catchment size.

Methods

We analysed NO3 and TP in 19 headwaters (1–14 km², Western France) every two weeks for 17 months. The headwater catchments had similar soil types, climate, and farming systems but differed in landscape composition and spatial configuration. We developed a landscape configuration index (LCI) describing the spatial organisation of nutrient sources as a function of their hydrological distance to streams and flow accumulation zones. We calibrated the LCI’s two parameters to maximise the rank correlation with median concentrations of TP and NO3.

Results

We found that landscape composition controlled NO3 exports, whereas landscape configuration controlled TP exports. For a given landscape composition, landscape spatial configuration was highly heterogeneous at small scales (< 10 km2) but became homogeneous at larger scales (> 50 km2).

Conclusions

The spatial configuration of nutrient sources influences TP but not NO3 exports. An ideal placement of mitigation measures to limit diffuse TP export should consider both the hydrological distance to streams and flow accumulation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This study is based on a recently published dataset entitled Repeated synoptic sampling for water chemistry monitoring in the Yvel catchment, northwestern France available at https://www.hydroshare.org/resource/7c7d7f6dd1f14450883ae1c243c3c28f/ (Dupas et al. 2020). It contains the hydrochemical data and the geographic information of the study site.

Code availability

The code (R script) produced to analyse the data and produce the Figures is available at https://github.com/Antoine-CSQN/landscape-configuration-paper.

References

  • Abbott BW, Gruau G, Zarnetske JP, Moatar F, Barbe L, Thomas Z, Fovet O, Kolbe T, Gu S, Pierson-Wickmann AC, Davy P (2018) Unexpected spatial stability of water chemistry in headwater stream networks. Ecol Lett 21:296–308

    Article  PubMed  Google Scholar 

  • Ahiablame LM, Chaubey I, Smith DR, Engel BA (2011) Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches. Agric Water Manag 98:1271–1279

    Article  Google Scholar 

  • Beaujouan V, Durand P, Ruiz L, Aurousseau P, Cotteret G (2002) A hydrological model dedicated to topography-based simulation of nitrogen transfer and transformation: rationale and application to the geomorphology-denitrification relationship. Hydrological Processes 16:493–507

    Article  Google Scholar 

  • Bishop K, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J (2008) Aqua Incognita: the unknown headwaters. Hydrol Process 22:1239–1242

    Article  Google Scholar 

  • Bol R, Gruau G, Mellander PE, Dupas R, Bechmann M, Skarbøvik E, Bieroza M, Djodjic F, Glendell M, Jordan P, Van der Grift B (2018) Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of Northwest Europe. Front Mar Sci. https://doi.org/10.3389/fmars.2018.00276

    Article  Google Scholar 

  • Borno ML, Muller-Stover DS, Liu F (2018) Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci Total Environ 627:963–974

    Article  PubMed  CAS  Google Scholar 

  • Bu H, Meng W, Zhang Y, Wan J (2014) Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol Indic 41:187–197

    Article  CAS  Google Scholar 

  • Buchanan B, Easton ZM, Schneider RL, Walter MT (2013) Modeling the hydrologic effects of roadside ditch networks on receiving waters. J Hydrol 486:293–305

    Article  CAS  Google Scholar 

  • Buchanan BP, Archibald JA, Easton ZM, Shaw SB, Schneider RL, Walter MT (2013) A phosphorus index that combines critical source areas and transport pathways using a travel time approach. J Hydrol 486:123–135

    Article  CAS  Google Scholar 

  • Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Prog Phys Geogr 29:297–316

    Article  Google Scholar 

  • Casal L, Durand P, Akkal-Corfini N, Benhamou C, Laurent F, Salmon-Monviola J, Vertès F (2019) Optimal location of set-aside areas to reduce nitrogen pollution: a modelling study. J Agric Sci 156:1090–1102

    Article  CAS  Google Scholar 

  • Casquin A, Gu S, Dupas R, Petitjean P, Gruau G, Durand P (2020) River network alteration of C-N-P dynamics in a mesoscale agricultural catchment. Sci Total Environ 749:141551

    Article  CAS  PubMed  Google Scholar 

  • Cassidy R, Jordan P (2011) Limitations of instantaneous water quality sampling in surface-water catchments: comparison with near-continuous phosphorus time-series data. J Hydrol 405:182–193

    Article  CAS  Google Scholar 

  • Cole LJ, Stockan J, Helliwell R (2020) Managing riparian buffer strips to optimise ecosystem services: a review. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2020.106891

    Article  Google Scholar 

  • Collick AS, Fuka DR, Kleinman PJ, Buda AR, Weld JL, White MJ, Veith TL, Bryant RB, Bolster CH, Easton ZM (2015) Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrol Process 29:588–601

    Article  CAS  Google Scholar 

  • Collins AL, Zhang Y, McChesney D, Walling DE, Haley SM, Smith P (2012) Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Sci Total Environ 414:301–317

    Article  CAS  PubMed  Google Scholar 

  • Dahlke HE, Easton ZM, Lyon SW, Todd Walter M, Destouni G, Steenhuis TS (2012) Dissecting the variable source area concept – subsurface flow pathways and water mixing processes in a hillslope. J Hydrol 420–421:125–141

    Article  CAS  Google Scholar 

  • Djodjic F, Borling K, Bergstrom L (2004) Phosphorus leaching in relation to soil type and soil phosphorus content. J Environ Qual 33:678–684

    Article  CAS  PubMed  Google Scholar 

  • Dodd RJ, Sharpley AN (2016) Conservation practice effectiveness and adoption: unintended consequences and implications for sustainable phosphorus management. Nutr Cycl Agroecosyst 104:373–392

    Article  CAS  Google Scholar 

  • Dodds W, Smith V (2016) Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6:155–164

    Article  CAS  Google Scholar 

  • Dodds WK, Oakes RM (2008) Headwater influences on downstream water quality. Environ Manag 41:367–377

    Article  Google Scholar 

  • Doody DG, Archbold M, Foy RH, Flynn R (2012) Approaches to the implementation of the water framework directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments. J Environ Manag 93:225–234

    Article  CAS  Google Scholar 

  • Doody DG, Withers PJ, Dils RM, McDowell RW, Smith V, McElarney YR, Dunbar M, Daly D (2016) Optimizing land use for the delivery of catchment ecosystem services. Front Ecol Environ 14:325–332

    Article  Google Scholar 

  • Downing J (2012) Global abundance and size distribution of streams and rivers. Inland Waters 2:229–236

    Article  Google Scholar 

  • DREAL B (2018) Directive nitrates 5ème programme d’actions en Bretagne. http://www.bretagne.developpement-durable.gouv.fr/cinquieme-programme-d-actions-regional-directive-r837.html. Accessed 11 January 2021

  • Dunne EJ, Mckee KA, Clark MW, Grunwald S, Reddy KR (2007) Phosphorus in agricultural ditch soil and potential implications for water quality. J Soil Water Conserv 62:244–252

    Google Scholar 

  • Dupas R, Delmas M, Dorioz J-M, Garnier J, Moatar F, Gascuel-Odoux C (2015) Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol Ind 48:396–407

    Article  CAS  Google Scholar 

  • Dupas R, Minaudo C, Abbott BW (2019) Stability of spatial patterns in water chemistry across temperate ecoregions. Environ Res Lett 14:074015

    Article  CAS  Google Scholar 

  • Dupas R, Gu S, Casquin A, Gruau G, Petitjean P, Durand P (2020) Repeated synoptic sampling for water chemistry monitoring in the Yvel catchment, northwestern France Hydroshare. http://www.hydroshare.org/resource/7c7d7f6dd1f14450883ae1c243c3c28f

  • Fiorellino N, Kratochvil R, Coale F (2017) Long-term agronomic drawdown of soil phosphorus in Mid-Atlantic coastal plain. Soils Agron J 109:455–461

    Article  Google Scholar 

  • Frei RJ, Abbott BW, Dupas R, Gu S, Gruau G, Thomas Z, Kolbe T, Aquilina L, Labasque T, Laverman A, Fovet O (2020) Predicting nutrient incontinence in the anthropocene at watershed scales. Front Environ Sci. https://doi.org/10.3389/fenvs.2019.00200

    Article  Google Scholar 

  • Gburek WJ, Sharpley AN (1998) Hydrologic controls on phosphorus loss from upland agricultural watersheds. J Environ Qual 27:267–277

    Article  CAS  Google Scholar 

  • Giri S, Qiu Z, Zhang Z (2018) Assessing the impacts of land use on downstream water quality using a hydrologically sensitive area concept. J Environ Manag 213:309–319

    Article  CAS  Google Scholar 

  • Goyette J-O, Bennett EM, Maranger R (2018) Differential influence of landscape features and climate on nitrogen and phosphorus transport throughout the watershed. Biogeochemistry 142:155–174

    Article  CAS  Google Scholar 

  • Gu S, Gruau G, Dupas R, Rumpel C, Crème A, Fovet O, Gascuel-Odoux C, Jeanneau L, Humbert G, Petitjean P (2017) Release of dissolved phosphorus from riparian wetlands: evidence for complex interactions among hydroclimate variability, topography and soil properties. Sci Total Environ 598:421–431

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Gruau G, Malique F, Dupas R, Petitjean P, Gascuel-Odoux C (2018) Drying/rewetting cycles stimulate release of colloidal-bound phosphorus in riparian soils . Geoderma 321:32–41

    Article  CAS  Google Scholar 

  • Gu S, Casquin A, Dupas R, Abbott BW, Petitjean P, Durand P, Gruau G (2021) Spatial persistence of water chemistry patterns across flow conditions in a mesoscale agricultural catchment. Water Resour Res. https://doi.org/10.1029/2020WR029053

    Article  Google Scholar 

  • Hashemi F, Olesen JE, Hansen AL, Borgesen CD, Dalgaard T (2018) Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. J Environ Manag 208:77–91

    Article  CAS  Google Scholar 

  • Hejnowicz AP, Raffaelli DG, Rudd MA, White PCL (2014) Evaluating the outcomes of payments for ecosystem services programmes using a capital asset framework. Ecosyst Serv 9:83–97

    Article  Google Scholar 

  • Hill CR, Robinson JS (2012) Phosphorus flux from wetland ditch sediments. Sci Total Environ 437:315–322

    Article  CAS  PubMed  Google Scholar 

  • IGN (2018) RGE ALTI version 2.0 Les modèles numériques 3D. https://geoservices.ign.fr/ressources_documentaires/Espace_documentaire/MODELES_3D/RGE_ALTI/DL_RGEALTI_2-0.pdf. Accessed 11 January 2021

  • Jarvie HP, Johnson LT, Sharpley AN, Smith DR, Baker DB, Bruulsema TW, Confesor R (2017) Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices? J Environ Qual 46:123–132

    Article  CAS  PubMed  Google Scholar 

  • King KW, Williams MR, Fausey NR (2015) Contributions of systematic tile drainage to watershed-scale phosphorus transport. J Environ Qual 44:486–494

    Article  PubMed  CAS  Google Scholar 

  • King KW, Williams MR, Macrae ML, Fausey NR, Frankenberger J, Smith DR, Kleinman PJ, Brown LC (2015) Phosphorus transport in agricultural subsurface drainage: a review. J Environ Qual 44:467–485

    Article  CAS  PubMed  Google Scholar 

  • Kronvang B, Audet J, Baattrup-Pedersen A, Jensen HS, Larsen SE (2012) Phosphorus load to surface water from bank erosion in a Danish lowland river basin. J Environ Qual 41:304–313

    Article  CAS  PubMed  Google Scholar 

  • Kronvang B, Jeppesen E, Conley DJ, Søndergaard M, Larsen SE, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288

    Article  CAS  Google Scholar 

  • Lannergård EE, Agstam-Norlin O, Huser BJ, Sandström S, Rakovic J, Futter MN (2020) New insights into legacy phosphorus from fractionation of streambed sediment. J Geophys Res. https://doi.org/10.1029/2020jg005763

    Article  Google Scholar 

  • Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2018) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lee S-W, Hwang S-J, Lee S-B, Hwang H-S, Sung H-C (2009) Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc Urban Plan 92:80–89

    Article  Google Scholar 

  • Levavasseur F, Martin P, Bouty C, Barbottin A, Bretagnolle V, Thérond O, Scheurer O, Piskiewicz N (2016) RPG explorer: a new tool to ease the analysis of agricultural landscape dynamics with the land parcel identification system. Comput Electron Agric 127:541–552

    Article  Google Scholar 

  • Lintern A, Webb JA, Ryu D, Liu S, Bende-Michl U, Waters D, Leahy P, Wilson P, Western AW (2018) Key factors influencing differences in stream water quality across space. Wiley Interdiscip Rev. https://doi.org/10.1002/wat2.1260

    Article  Google Scholar 

  • Liu J, Liu X, Wang Y, Li Y, Jiang Y, Fu Y, Wu J (2020) Landscape composition or configuration: which contributes more to catchment hydrological flows and variations? Landsc Ecol 35:1531–1551

    Article  Google Scholar 

  • McDowell RW, Moreau P, Salmon-Monviola J, Durand P, Leterme P, Merot P (2014) Contrasting the spatial management of nitrogen and phosphorus for improved water quality: modelling studies in New Zealand and France European. J Agron 57:52–61

    CAS  Google Scholar 

  • McDowell RW, Srinivasan MS (2009) Identifying critical source areas for water quality: 2. Validating the approach for phosphorus and sediment losses in grazed headwater catchments. J Hydrol 379:68–80

    Article  CAS  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Carvallis

    Book  Google Scholar 

  • Moatar F, Floury M, Gold AJ, Meybeck M, Renard B, Ferréol M, Chandesris A, Minaudo C, Addy K, Piffady J, Pinay G (2020) Stream solutes and particulates export regimes: a new framework to optimize their monitoring. Front Ecol Evol. https://doi.org/10.3389/fevo.2019.00516

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Musolff A, Fleckenstein JH, Rao PSC, Jawitz JW (2017) Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments. Geophys Res Lett 44:4143–4151

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data Computer Vision. Graph Image Process 28:323–344

    Article  Google Scholar 

  • ODEM (2012) Apports de phosphore et proliférations de cyanobactéries dans le Lac au Duc (Morbihan)

  • Ouyang W, Song K, Wang X, Hao F (2014) Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics. Ecol Ind 45:579–589

    Article  Google Scholar 

  • Page T et al (2005) Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. J Environ Qual 34:2263–2277

    Article  CAS  PubMed  Google Scholar 

  • Peterson EE, Sheldon F, Darnell R, Bunn SE, Harch BD (2011) A comparison of spatially explicit landscape representation methods and their relationship to stream condition. Freshw Biol 56:590–610

    Article  Google Scholar 

  • Pionke HB, Gburek WJ, Sharpley AN (2000) Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecol Eng 14:325–335

    Article  Google Scholar 

  • Planchon O, Darboux F (2002) A fast, simple and versatile algorithm to fill the depressions of digital elevation models . Catena 46:159–176

    Article  Google Scholar 

  • Pringle CM (1990) Nutrient spatial heterogeneity: effects on community structure physiognomy diversity of stream algae . Ecology 71:905–920

    Article  Google Scholar 

  • Qin C, Zhu AX, Pei T, Li B, Zhou C, Yang L (2007) An adaptive approach to selecting a flow-partition exponent for a multiple‐flow‐direction algorithm. Int J Geogr Inf Sci 21:443–458

    Article  Google Scholar 

  • Reaney SM, Mackay EB, Haygarth PM, Fisher M, Molineux A, Potts M, Benskin CMH (2019) Identifying critical source areas using multiple methods for effective diffuse pollution mitigation. J Environ Manag 250:109366

    Article  CAS  Google Scholar 

  • Roberts WM, Stutter MI, Haygarth PM (2012) Phosphorus retention and remobilization in vegetated buffer strips: a review. J Environ Qual 41:389–399

    Article  CAS  PubMed  Google Scholar 

  • Roberts WM, George TS, Stutter MI, Louro A, Ali M, Haygarth PM (2020) Phosphorus leaching from riparian soils with differing management histories under three grass species. J Environ Qual 49:74–84

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom S, Futter MN, Kyllmar K, Bishop K, O’Connell DW, Djodjic F (2020) Particulate phosphorus and suspended solids losses from small agricultural catchments: links to stream and catchment characteristics. Sci Total Environ 711:134616

    Article  PubMed  CAS  Google Scholar 

  • Schmadel NM, Harvey JW, Schwarz GE, Alexander RB, Gomez-Velez JD, Scott D, Ator SW (2019) Small ponds in headwater catchments are a dominant influence on regional nutrient and sediment budgets. Geophys Res Lett 46:9669–9677

    Article  Google Scholar 

  • Sharpley AN, Kleinman PJA, Flaten DN, Buda AR (2011) Critical source area management of agricultural phosphorus: experiences, challenges and opportunities. Water Sci Technol 64:945–952

    Article  CAS  PubMed  Google Scholar 

  • Shatwell T, Köhler J (2018) Decreased nitrogen loading controls summer cyanobacterial blooms without promoting nitrogen-fixing taxa: Long-term response of a shallow lake. Limnol Oceanogr. https://doi.org/10.1002/lno.11002

    Article  Google Scholar 

  • Shi ZH, Ai L, Li X, Huang XD, Wu GL, Liao W (2013) Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J Hydrol 498:165–176

    Article  Google Scholar 

  • Shore M, Jordan P, Mellander PE, Kelly-Quinn M, Wall DP, Murphy PN, Melland AR (2014) Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments. Sci Total Environ 490:405–415

    Article  CAS  PubMed  Google Scholar 

  • Sliva L, Dudley Williams D (2001) Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res 35:3462–3472

    Article  CAS  PubMed  Google Scholar 

  • Smith DR (2009) Assessment of in-stream phosphorus dynamics in agricultural drainage ditches. Sci Total Environ 407:3883–3889

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Livingston SJ (2013) Managing farmed closed depressional areas using blind inlets to minimize phosphorus and nitrogen losses. Soil Use Manag 29:94–102

    Article  Google Scholar 

  • Smith DR, Pappas EA (2007) Effect of ditch dredging on the fate of nutrients in deep drainage ditches of the Midwestern United States. J Soil Water Conserv 62:252–261

    Google Scholar 

  • Srinivasan MS, McDowell RW (2009) Identifying critical source areas for water quality: 1. Mapping and validating transport areas in three headwater catchments in Otago, New Zealand. J Hydrol 379:54–67

    Article  CAS  Google Scholar 

  • Staponites LR, Bartak V, Bily M, Simon OP (2019) Performance of landscape composition metrics for predicting water quality in headwater catchments. Sci Rep 9:14405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steffen W et al (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  PubMed  CAS  Google Scholar 

  • Stelzer RS, Lamberti GA (2001) Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46:356–367

    Article  Google Scholar 

  • Strohmenger L, Fovet O, Akkal-Corfini N, Dupas R, Durand P, Faucheux M, Gruau G, Hamon Y, Jaffrézic A, Minaudo C, Petitjean P (2020) Multitemporal relationships between the hydroclimate and exports of carbon, nitrogen, and phosphorus in a small agricultural watershed. Water Resour Res. https://doi.org/10.1029/2019wr026323

    Article  Google Scholar 

  • Temnerud J, Bishop K (2005) Spatial variation of streamwater chemistry in two Swedish boreal catchments: implications for environmental assessment. Environ Sci Technol 39:1463–1469

    Article  CAS  PubMed  Google Scholar 

  • Thomas IA, Mellander PE, Murphy PN, Fenton O, Shine O, Djodjic F, Dunlop P, Jordan P (2016) A sub-field scale critical source area index for legacy phosphorus management using high resolution data. Agric Ecosyst Environ 233:238–252

    Article  CAS  Google Scholar 

  • Thomas Z, Abbott BW (2018) Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects. J Contam Hydrol 215:51–61

    Article  CAS  PubMed  Google Scholar 

  • Thomas Z, Abbott BW, Troccaz O, Baudry J, Pinay G (2016) Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences 13:1863–1875

    Article  CAS  Google Scholar 

  • Uuemaa E, Roosaare J, Mander Ü (2007) Landscape metrics as indicators of river water quality at catchment scale. Hydrol Res 38:125–138

    Article  CAS  Google Scholar 

  • Wang M, Wang Y, Li Y, Liu X, Liu J, Wu J (2020) Natural and anthropogenic determinants of riverine phosphorus concentration and loading variability in subtropical agricultural catchments. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2019.106713

    Article  Google Scholar 

  • Withers P, Neal C, Jarvie H, Doody D (2014) Agriculture and eutrophication: where do we go from here? Sustainability 6:5853–5875

    Article  Google Scholar 

  • Withers PJ, Jarvie HP, Stoate C (2011) Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters. Environ Int 37:644–653

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Wang G, Zhang Q, Zhang Z (2016) Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Sci Rep 6:25250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates AG, Brua RB, Corriveau J, Culp JM, Chambers PA (2014) Seasonally driven variation in spatial relationships between agricultural land use and in-stream nutrient concentrations . River Res Appl 30:476–493

    Article  Google Scholar 

  • Zhang W, Pueppke SG, Li H, Geng J, Diao Y, Hyndman DW (2019) Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113273

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors were supported by the Interreg project Channel Payments for Ecosystem Services, funded through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Contributions

AC: Conceptualization, Methodology, Formal analysis, Visualization, Writing - original draft. RD: Conceptualization, Supervision, Funding acquisition. SG: Sample collection and analysis. EC: Sample collection and analysis. GG: Project administration, Funding acquisition. PD: Supervision. All authors contributed substantially to revisions.

Corresponding author

Correspondence to Antoine Casquin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

All co-authors—A. Casquin, R. Dupas, S. Gu, E. Couic, G. Gruau and P. Durand—have approved the manuscript and agree with its submission to Landscape Ecology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 522.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casquin, A., Dupas, R., Gu, S. et al. The influence of landscape spatial configuration on nitrogen and phosphorus exports in agricultural catchments. Landscape Ecol 36, 3383–3399 (2021). https://doi.org/10.1007/s10980-021-01308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01308-5

Keywords

Navigation