Skip to main content

The disappearing Dry Chaco, one of the last dry forest systems on earth

Abstract

Context

The Dry Chaco spans more than 87 million hectares across Argentina, Bolivia, and Paraguay. This unique forest system has experienced extensive loss and fragmentation due to land-use change, with different land-use histories in the three countries. This forest loss has altered landscape connectivity for the Dry Chaco’s associated biota.

Objectives

We compared patterns of deforestation-induced fragmentation and concomitant changes in structural landscape connectivity between 2000 and 2019 in the three countries to identify consistent patterns that might facilitate biome-wide conservation.

Methods

We quantified forest cover in the Dry Chaco of Argentina, Bolivia, and Paraguay for the years 2000 and 2019 at 30 m resolution. We analyzed structural connectivity at three scales. Then, we identified and visualized the most important stepping stones per country per year.

Results

Between 2000 and 2019, the overall extent of Dry Chaco forest cover decreased by 20.2% (9.5 million ha). All three counties experienced substantial reductions, with Paraguay undergoing the greatest loss and fragmentation relative to 2000. Most of the overall network metrics decreased from 2000 to 2019 for Paraguay and Bolivia, but Argentina experienced increased coalescence distance and average nodal connectance. Dispersal-level metrics showed clustering threshold distances between 1000 and 2000 m for each country in both years.

Conclusions

The large number of forest fragments and distances between them suggest that some mammals characteristic of the biome may be experiencing negative impacts from this fragmentation. Contemporary and future challenges of uncoordinated national conservation and management policies, land speculation, and increased human infrastructure will accelerate the rate of deforestation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data used is either available as supporting materials or will be made available upon request. We would like to include our forest shapefiles we developed as part of our supporting material when the article is accepted.

Code availability

R code is available from the corresponding author.

References

  • Aguilar R, Calviño A, Ashworth L, Aguirre-Acosta N, Carbone LM, Albrieu-Llinás G, Nolasco M, Ghilardi A, Cagnolo L (2018) Unprecedented plant species loss after a decade in fragmented subtropical Chaco Serrano forests. PLoS ONE 13:e0206738

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Andrade-Díaz MS, Sarquis JA, Loiselle BA, Giraudo AR, Díaz-Gómez JM (2019) Expansion of the agricultural frontier in the largest South American dry forest: identifying priority conservation areas for snakes before everything is lost. PLoS ONE 14:e0221901

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ascensão F, Yoguid D, Alvesd M, Medicig EP, Desbiez A (2019) Predicting spatiotemporal patterns of road mortality for medium-large mammals. J Environ Manag 248:109320

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995

    Article  Google Scholar 

  • Brancalion PHS, Niamir A, Broadbent E, Crouzeilles R, Barros FSM, Almeyda Zambrano AM, Baccini A, Aronson J, Goetz S, Reid JL, Strassburg BBN, Wilson S, Chazdon RL (2019) Global restoration opportunities in tropical rainforest landscapes. Sci Adv 5:eaav3223

    PubMed  PubMed Central  Article  Google Scholar 

  • Brooks DM (1998) Habitat variability as a predictor of rarity in large Chacoan mammals. Vida Silvestre Neotrop 7:115–120

    Google Scholar 

  • Brown AD, Rumiz DI (1986) Distribucion y conservacion de los primates en Bolivia - estado actual de conocimiento. In: de Mello MT (eds) A primatologia no Brasil, vol 2. Sociedade Brasileira de Primatologia. Brasilia, Brazil, pp 335–363

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  • Cáceres DM (2015) Accumulation by dispossession and socio-environmental conflicts caused by the expansion of agribusiness in Argentina. J Agrar Change 15:116–147

    Article  Google Scholar 

  • Cabral-B H, Yanosky A, Romero-N L, Bueno D, Brooks DM (2017) A new locality in Paraguay for the Black-tailed Marmoset, Mico melanurus (Geoffroy Saint-Hilaire, 1812) (Primates, Callitrichidae). Check List 13:1–4.

    Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • Caldas MM, Goodin D, Sherwood S, Campos Krauer JM, Wisely SM (2015) Land-cover change in the Paraguayan Chaco: 2000–2011. J Land Use Sci 10:1–18

    Article  Google Scholar 

  • Campos-Krauer JM, Wisely SM (2011) Deforestation and cattle ranching drive rapid range expansion of capybara in the Gran Chaco ecosystem. Glob Change Biol 17:206–218.

    Article  Google Scholar 

  • Carranza ML, Frate L, Acosta AT, Hoyos L, Ricotta C, Cabido M (2014) Measuring forest fragmentation using multitemporal remotely sensed data: three decades of change in the dry Chaco. Eur J Remote Sens 47:793–804

    Article  Google Scholar 

  • Chase JM, Blowes SA, Knight TM, Gerstner K, May F (2020) Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584:238–243

    PubMed  Article  CAS  Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation: maintaining connections for nature. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695 5:1

    Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111

    PubMed  Article  CAS  Google Scholar 

  • de la Sancha NU (2014) Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78:437–449

    Google Scholar 

  • de la Sancha NU, Boyle SA (2019) Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS ONE 14(12):e0226529.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • de la Sancha NU, D’Elía G (2015) Additions to the Paraguayan mammal fauna: the first records of two marsupials (Didelphimorphia, Didelphidae) with comments on the alpha taxonomy of Cryptonanus and Philander. Mammalia 79:343–356

    Google Scholar 

  • de la Sancha NU, Solari S, Owen RD (2007) First records of Monodelphis kunsi Pine (Didelphimorphia, Didelphidae) from Paraguay, with an evaluation of its distribution. Mastozool Neotrop 14:241–247

    Google Scholar 

  • de la Sancha NU, D’Elía G, Teta P (2012) Systematics of the subgenus of mouse opossums Marmosa (Micoureus) (Didelphimorphia, Didelphidae) with noteworthy records from Paraguay. Mamm Biol-Zeitschrift Für Säugetierkunde 77:229–236

    Article  Google Scholar 

  • de la Sancha NU, Higgins CL, Presley SJ, Strauss RE (2014) Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers Distrib 20:1058–1070

    Article  Google Scholar 

  • de la Sancha NU, López-González C, D’Elía G, Myers P, Valdez L, Ortiz ML (2017) An annotated checklist of the mammals of Paraguay. Therya 8:241–260

    Article  Google Scholar 

  • de la Sancha NU, Maestri R, Bovendorp RS, Higgins CL (2020) Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52:182–195.

    Article  Google Scholar 

  • Drake JC, Griffis-Kyle K, McIntyre NE (2017) Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8:e01652

    Article  Google Scholar 

  • DRYFLOR, Pennington RT, Banda-R K, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Maturo HM, Mogni V, Oakley L, Olivera-Filho A, Prado D, Quintana C, Riina R, Särkinen T (2017) Forest conservation: remember Gran Chaco—response. Science 355:465–466

    PubMed  CAS  Google Scholar 

  • Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KAI, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM, Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski R, Shanee S, Shanee N, Boyle SA, Fuentes A, MacKinnon KC, Amato KR, Meyer ALS, Wich S, Sussman RW, Pan R, Kone I, Baoguo L (2017) Impending extinction crisis of the world’s primates: why primates matter. Sci Adv 3:e1600946

    PubMed  PubMed Central  Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • FAO (United Nations Food and Agriculture Organization) (2015) Global Forest Resources Assessment 2015. FAO Forestry Paper No. 1. U.N. Food and Agriculture Organization, Rome, Italy

  • Fehlenberg V, Baumann M, Gasparri NI, Piquer-Rodriguez M, Gavier-Pizarro G, Kuemmerle T (2017) The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob Environ Change 45:24–34

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    PubMed  Article  CAS  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • Gasparri NI, Grau HR (2009) Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For Ecol Manag 258:913–921

    Article  Google Scholar 

  • Gaveau DLA, Locatelli B, Salim MA, Yaen H, Pacheco P, Shell D (2019) Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv Lett 12:e12622

    Article  Google Scholar 

  • Grantham HS, Duncan A, Evans JKR, Beyer HL, Schuster R, Walston J, Ray JC, Robinson JG, Callow M, Clements T, Costa HM, DeGemmis A, Elsen PR, Ervin J, Franco P, Goldman E, Goetz S, Hansen A, Hofsvang E, Jantz P, Jupiter S, Kang A, Langhammer P, Laurance WF, Lieberman S, Linkie M, Malhi Y, Maxwell S, Mendez M, Mittermeier R, Murray NJ, Possingham H, Radachowsky J, Saatchi S, Samper C, Silverman J, Shapiro A, Strassburg B, Stevens T, Stokes E, Taylor R, Tear T, Tizard R, Venter O, Visconti P, Wang S, Watson JEM (2020) Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat Commun 11:5978

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Grau HR, Gasparri NI, Aide TM (2008) Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Glob Change Biol 14:985–997

    Article  Google Scholar 

  • Guyra Paraguay (2008) Áreas de importancia para la conservación de las aves en Paraguay. Guyra Paraguay/BirdLife International, Asunción

    Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    PubMed  PubMed Central  Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Wang L, Song X-P, Tyukavina A, Turubanova S, Potapov SSV (2020) The fate of tropical forest fragments. Sci Adv 6:eaax8574

    PubMed  PubMed Central  Article  Google Scholar 

  • Heino M, Kummu M, Makkonen M, Mulligan M, Verburg PH, Jalava M, Räsänen TA (2015) Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE 10:e0138918

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Janssen MA, Bodin Ö, Anderies JM, Elmqvist T, Ernstson H, McAllister RRJ, Olsson P, Ryan P (2006) Toward a network perspective on the resilience of social-ecological systems. Ecol Soc 11:15

    Article  Google Scholar 

  • Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:4

    Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kuemmerle T, Altrichter M, Baldi G, Cabido M, Camino M, Cuellar E, Cuellar RL, Decarre J, Díaz S, Gasparri I, Gavier-Pizarro G, Ginzburg R, Giordano AJ, Grau HR, Jobbágy E, Leynaud G, Macchi L, Mastrangelo M, Matteucci SD, Noss A, Paruelo J, Piquer-Rodríguez M, Romero-Muñoz A, Semper-Pascual A, Thompson J, Torrella S, Torres R, Volante JN, Yanosky A, Zak M (2017) Forest conservation: remember Gran Chaco. Science 355:465–465

    PubMed  Article  CAS  Google Scholar 

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS world. Prog Phys Geogr 36:400–420

    Article  Google Scholar 

  • Laurance WF, Camargo JLC, Luizāo RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson BG, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67

    Article  Google Scholar 

  • Leguizamón A (2016) Disappearing nature? Agribusiness, biotechnology and distance in Argentine soybean production. J Peasant Stud 43:313–330

    Article  Google Scholar 

  • Le Polain de Waroux Y, Baumann M, Gasparri NI, Gavier-Pizarro G, Godar J, Kuemmerle T, Müller R, Vázquez F, Volante JN, Meyfroidt P (2018) Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann Am Assoc Geogr 108:204–225

    Google Scholar 

  • Lookingbill TR, Gardner RH, Ferrari J, Keller C (2010) Combining a dispersal model with network theory to assess habitat connectivity. Ecol Appl 20:427–441

    PubMed  Article  Google Scholar 

  • López–González C (2005) Murciélagos del Paraguay. Biosfera, Publicaciones del Comité Español del Programa MaB y de la Red IberoMaB de la UNESCO. Sevilla, Spain

  • Maffei L, Cuéllar E, Noss A (2004) One thousand jaguars (Panthera onca) in Bolivia’s Chaco? Camera trapping in the Kaa-Iya National Park. J Zool 262:295–304

    Article  Google Scholar 

  • Matteucci SD, Camino M (2012) Protected Areas Isolation in the Chaco Region, Argentina. J Geogr Geol 4:15–28

    Google Scholar 

  • McBride RT Jr, Thompson JJ (2019) Spatial ecology of Paraguay’s last remaining Atlantic Forest jaguars (Panthera onca): implications for their long-term survival. Biodiversity 20:20–26

    Article  Google Scholar 

  • McIntyre NE, Collins SD, Heintzman LJ, Starr SM, van Gestel N (2018) The challenge of assaying landscape connectivity in a changing world: a 27-year case study in the southern Great Plains (USA) playa network. Ecol Ind 91:607–616

    Article  Google Scholar 

  • Mereles MF, Céspedes G, Cartes JL, Goerzen R, de Egea-Elsam J, Rodríguez L, Yanosky A, Villalba L, Weiler A, Cacciali P (2020) Biological corridors as a connectivity tool in the region of the Great American Chaco: identification of biodiversity hotspots in the ecoregions of the Paraguayan Chaco. Res Ecol 2:27–36

    Google Scholar 

  • Mereles MF, Rodas O (2014) Assessment of rates of deforestation classes in the Paraguayan Chaco (Great South American Chaco) with comments on the vulnerability of forest fragments to climate change. Clim Change 127:55–71

    Article  Google Scholar 

  • Milodowski DT, Mitchard ETA, Williams M (2017) Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ Lett 12:094003

    Article  Google Scholar 

  • Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782

    PubMed  Article  Google Scholar 

  • Nativa (2020) Evaluación Ecorregional – Actualización al 2018 – documento resumen. https://nativabolivia.org/wp-content/uploads/2020/05/Resumen-Evaluaci%C3%B3n-Ecorregional-actualizaci%C3%B3n-2018.pdf.

  • Názaro MG, Dos Santos DA, Torres R, Baumann M, Blendinger PG (2020) Untangling the imprints of climate, geography and land use/cover on bird diversity in the South American Gran Chaco. J Biogeogr 47:1439–1454

    Article  Google Scholar 

  • Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib 22:1212–1219

    Article  Google Scholar 

  • Núñez-Regueiro MM, Branch L, Fletcher RJ Jr, Marás GA, Derlindati E, Tálamo A (2015) Spatial patterns of mammal occurrence in forest strips surrounded by agricultural crops of the Chaco region, Argentina. Biol Conserv 187:19–26

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13:2567–2586

    Article  Google Scholar 

  • Periago ME, Chillo V, Ojeda RA (2015) Loss of mammalian species from the South American Gran Chaco: empty savanna syndrome? Mammal Rev 45:41–53

    Article  Google Scholar 

  • Periago ME, Tamburini DM, Ojeda RA, Cáceres DM, Díaz S (2017) Combining ecological aspects and local knowledge for the conservation of two native mammals in the Gran Chaco. J Arid Environ 147:54–62

    Article  Google Scholar 

  • Piquer-Rodríguez M, Torella S, Gavier-Pizarro G, Volante J, Somma D, Ginzburg R, Kuemmerle T (2015) Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landsc Ecol 30:817–833

    Article  Google Scholar 

  • Potapov P, Mansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:e1600821

    PubMed  PubMed Central  Article  Google Scholar 

  • Prado D (1993) What is the Gran Chaco vegetation in South America? I: A review. Contribution to the study of flora and vegetation of the Chaco. Candollea 48:145–172

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    PubMed  Article  Google Scholar 

  • Redford KH, Taber A, Simonetti JA (1990) There is more to biodiversity than the tropical rain forests. Conserv Biol 4:328–330

    Article  Google Scholar 

  • Romero-Muñoz A, Fandos G, Benítez-López A, Kuemmerle T (2020a) Habitat destructions and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco. Glob Change Biol. https://doi.org/10.1111/gcb.15418

    Article  Google Scholar 

  • Romero-Muñoz A, Benítez-López A, Zurell D, Baumann M, Camino M, Decarre J, del Castillo H, Giordano AJ, Gómez-Valencia B, Levers C, Noss AJ, Quiroga V, Thompson JJ, Torres H, Velilla M, Weiler A, Kuemmerle T (2020b) Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43:954–966

    Article  Google Scholar 

  • Ruiz LJ, Parikh NN, Heintzman LJ, Collins SD, Starr SM, Wright CK, Henebry GM, van Gestel N, McIntyre NE (2014) Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc Ecol 29:507–516

    Article  Google Scholar 

  • Sandoval ML, Barquez RM (2013) La identidad de la fauna de murciélagos del Chaco: patrones de congruencia distribucional e implicancias en su conservación. Rev Chil Hist Nat 86:75–94

    Article  Google Scholar 

  • Semper-Pascual A, Macchi L, Sabatini FM, Decarre J, Baumann M, Blendinger PG, Gómez-Valencia B, Mastrangelo ME, Kuemmerle T (2018) Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco. J Appl Ecol 55:1218–1229

    Article  Google Scholar 

  • Sloan S, Slayer JA (2015) Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag 352:134–145

    Article  Google Scholar 

  • Stallings J (1989) Status y conservación de primates en el Paraguay. In: Saavedra CJ, Mittermeier RA, Santos IB (eds) La Primatología en Latinoamérica. World Wildlife Fund, Washington, D.C., USA, pp 133–151

    Google Scholar 

  • Taubert F, Fischer R, Groeneveld J, Lahmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522

    Article  CAS  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Teta P, D’Elía G, Flores D, de la Sancha NU (2009) Diversity and distribution of the mouse opossums of the genus Thylamys (Didelphimorphia, Didelphidae) in northeastern and central Argentina. Gayana 73:180–199

    Google Scholar 

  • Teta P, Abba AM, Cassini GH, Flores DA, Galliari CA, Lucero SO, Ramírez M (2018) Lista revisada de los mamíferos de Argentina. Mastozool Neotrop 25:163–198

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landsc Ecol 15:633–641

    Article  Google Scholar 

  • TNC (The Nature Conservancy), Fundación Vida Silvestre Argentina, Fundación para el Desarrollo Sustentable del Chaco (DeSdel Chaco), Wildife Conservation Society Bolivia (WCS) (2005) Evaluación Ecorregional del Gran Chaco Americano / Gran Chaco Americano Ecoregional Assessment. Fundación Vida Silvestre Argentina, Buenos Aires

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2003) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • UNEP-WCMC, IUCN (2020) Protected planet: the world database on protected areas (WDPA). http://www.protectedplanet.net. Accessed 4 Dec 2020.

  • Weems EI, de la Sancha NU, Anderson LJ, Zambrana-Torrelio C, Ferraris RP (2021) Centering microbes in the emerging role of integrative biology in understanding environmental change. Integr Comp Biol. https://doi.org/10.1093/icb/icab047

    Article  PubMed Central  Google Scholar 

  • Weiler A, Núñez K, Silla F (2020) Forest matters: use of water reservoirs by mammal communities in cattle ranch landscapes in the Paraguayan Dry Chaco. Glob Ecol Conserv 23:e01103

    Article  Google Scholar 

  • Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biol Conserv 120:589–598

    Article  Google Scholar 

Download references

Funding

Partial financial support to ND came from the Grainer Bioinformatics Center at The Field Museum.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NUdlS, SAB, NEM, DMB, AY, ECS, FM, MC, RDS; Data curation: NUdlS, SAB, Formal analysis: NUdlS, SAB, Funding acquisition: NUdlS, SAB; Methodology: NUdlS, SAB, NEM; Project administration: NUdlS, SAB, NEM; Validation: NUdlS, SAB, NEM; Visualization: NUdlS, SAB; Writing—original draft: NUdlS, SAB, NEM, DMB, AY, ECS, FM, MC, RDS; Writing—review and editing: NUdlS, SAB, NEM, DMB, RDS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Noé U. de la Sancha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All authors consented to participate on this manuscript.

Consent for publication

All authors have appropriate consent to publish this data from their institutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de la Sancha, N.U., Boyle, S.A., McIntyre, N.E. et al. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol 36, 2997–3012 (2021). https://doi.org/10.1007/s10980-021-01291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01291-x

Keywords

  • Argentina
  • Bolivia
  • Deforestation
  • Graph theory
  • Paraguay
  • Structural connectivity