Skip to main content

Geomorphic controls on shrub canopy volume and spacing of creosote bush in northern Mojave Desert, USA

Abstract

Context

Studies on the role of geomorphology on vegetation structure at the basin scale are rarely available and less likely in the future due to access, funding, and potential health risks.

Objectives

Our goal is to determine the primary abiotic controlling factor(s) on shrub canopy structure using a dataset of approximately 23 million individual shrubs, generated using remote sensing and ground-truthing by Young et al. (in Remote Sens 9(5):16, https://doi.org/10.3390/rs9050458, 2017). We posit that landscape position and local-scale geomorphic features in a desert alluvial fan environment will influence canopy volume and shrub spacing of creosote bush Larrea tridentata.

Methods

We relate selected characteristics (canopy volume and spatial distribution) of identified L. tridentata to aspect and surface geomorphology at each shrub location. Statistical analyses included K-S testing, distribution fitting, and several generalized linear models (GLMs). The study was located in Eldorado Valley, Nevada, USA.

Results

Aspect and surface age have demonstrable influences on both shrub canopy volume and shrub spacing for all 5 geomorphic surfaces studied, with the highest median canopy volumes on east-facing surface (0.758 m3) almost 5 × larger than the lowest median volumes (0.152 m3) on the WNW-facing surfaces; variability in shrub volume was also higher on east-facing than west-facing surfaces. Shrub spacing on alluvial flat and fan skirt surfaces (2.418 and 2.333 m, respectively) were larger than older alluvial fan, fan piedmont and fan remnant surfaces (1.776, 1.837 and 1.892 m, respectively).

Conclusions

Results show a significant relationship between shrub spacing and canopy volume by aspect and geomorphic surface, indicating a threshold at which biotic effects on canopy structure from intra-species competition transition to abiotic effects governed by geomorphic and climatological factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bedford DR, Miller DM, Schmidt KM, Phelps GA (2009) Landscape-scale relationships between surficial geology, soil texture, topography, and creosote bush size and density in the eastern Mojave Desert of California. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 252–277

    Google Scholar 

  2. Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a Creosotebush (Larrea tridentata) Population. Ecology 75(6):1693–1702.

    Article  Google Scholar 

  3. Brisson J, Reynolds JF (1997) Effects of compensatory growth on population processes: a simulation study. Ecology 78(8):2378–2384

    Google Scholar 

  4. Bryan K (1928) Historic evidence on changes in the channel of Rio Puerco, a tributary of the Rio Grande in New Mexico. J Geol 36(3):265–282.

    Article  Google Scholar 

  5. Buck BJ, Goossens D, Metcalf RV, McLaurin B, Ren M, Freudenberger F (2013) Naturally occurring asbestos: potential for human exposure, southern Nevada USA. Soil Sci Soc Am J 77:2192–2204.

    CAS  Article  Google Scholar 

  6. Callaway RM, Mahall BE (1991) Root communication among desert shrubs. Proc Natl Acad Sci 88:874–876

    PubMed  Article  Google Scholar 

  7. Caldwell TG, Young MH, Zhu JT, McDonald EV (2008) Spatial structure of hydraulic properties from canopy to interspace in the Mojave Desert. Geophys Res Lett 35(19):6.

    Article  Google Scholar 

  8. Caldwell TG, Young MH, McDonald EV, Zhu J (2012) Soil heterogeneity in Mojave Desert shrublands: biotic and abiotic processes. Water Resour Res 48:W09551.

    Article  Google Scholar 

  9. Caylor KK, Manfreda S, Rodriguez-Iturbe I (2005) On the coupled geomorphological and ecohydrological organization of river basins. Adv Water Resour 28(1):69–86.

    Article  Google Scholar 

  10. Clark County (2019) Clark County Desert conservation program Boulder city conservation easement management plan. Ver. 3.4. plus appendices, p 44

  11. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445–453

    Article  Google Scholar 

  12. Cooray K, Ananda MM (2008) A generalization of the half-normal distribution with applications to lifetime data. Commun Stat Theory Method 37(9):1323–1337

    Article  Google Scholar 

  13. Corenblit D, Steiger J (2009) Vegetation as a major conductor of geomorphic changes on the Earth surface: toward evolutionary geomorphology. Earth Surf Process Landforms 34:891–896.

    Article  Google Scholar 

  14. Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Softw 64(4):1–34

    Article  Google Scholar 

  15. Dunkerley DL, Brown KJ (2002) Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. J Arid Environ 51(2):163–181.

    Article  Google Scholar 

  16. ESRI (2016) ArcGIS desktop (version 15.1). Environmental Systems Research Institute, Redlands

    Google Scholar 

  17. Ezcurra E, Arizaga S, Valverde PL, Mourelle C, Floresmartinez A (1992) Foliole movement and canopy architecture of Larrea-Tridentata in Mexican Deserts. Oecologia 92(1):83–89.

    PubMed  Article  Google Scholar 

  18. Fonteyn PJ, Mahall BE (1981) An experimental-analysis of structure in a desert plant community. J Ecol 69(3):883–896.

    Article  Google Scholar 

  19. Fowler N (1986) The role of competition in plant-communities in arid and semiarid regions. Annu Rev Ecol Syst 17:89–110.

    Article  Google Scholar 

  20. Gardner DR (1998) The national cooperative soil survey of the United States (No 7). US Department of Agriculture, Natural Resources Conservation Service, Resource Economics and Social Sciences Division, Washington, DC

    Google Scholar 

  21. Gile LH, Gibbens RP, Lenz JM (1998) Soil-induced variability in root systems of creosotebush (Larrea tridentata) and tarbush (Flourensia cernua). J Arid Environ 39(1):57–78.

    Article  Google Scholar 

  22. Glenn NF, Spaete LP, Sankey TT, Derryberry DR, Hardegree SP, Mitchell JJ (2011) Errors in LiDAR-derived shrub height and crown area on sloped terrain. J Arid Environ 75:377–382

    Article  Google Scholar 

  23. Hamerlynck EP, McAuliffe JR, McDonald EV, Smith SD (2002) Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83(3):768–779

    Article  Google Scholar 

  24. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95.

    Article  Google Scholar 

  25. Huntington E (1914) The climatic factor as illustrated in Arid America. Geogr J 46(4):308–310

    Google Scholar 

  26. Istanbulluoglu E, Yetemen O, Vivoni ER, Gutiérrez-Jurado HA, Bras RL (2008) Ecogeomorphicimplications of hillslope aspect: inferences from analysis of landscape morphology in central New Mexico. Geophys Res Lett 35:L14403. https://doi.org/10.1029/2008GL034477

    Article  Google Scholar 

  27. Lunt OR, Letey J, Clark SB (1973) Oxygen requirements for root growth in 3 species of desert shrubs. Ecology 54(6):1356–1362.

    Article  Google Scholar 

  28. Marston RA (2010) Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops. Geomorphology 116(3–4):206–217

    Article  Google Scholar 

  29. McAuliffe JR (1994) Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas. Ecol Monogr 64(2):111–148.

    Article  Google Scholar 

  30. McAuliffe JR, McDonald EV (2006) Holocene environmental change and vegetation contraction in the Sonoran Desert. Quatern Res 65(02):204–215

    Article  Google Scholar 

  31. McFadden LD, Wells SG, Jercinovich MJ (1987) Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology 15(6):504–508.

    CAS  Article  Google Scholar 

  32. McKinney W (2010) Data structures for statistical computing in Python. In: Proceedings of the 9th Python in science conference. pp 51–56

  33. Meinzer FC, Rundel PW, Sharifi MR, Nilsen ET (1986) Turgor and osmotic relations of the desert shrub Larrea tridentata. Plant Cell Environ 9(6):467–475.

    Article  Google Scholar 

  34. Monger HC, Bestelmeyer BT (2006) The soil-geomorphic template and biotic change in arid and semi-arid ecosystems. J Arid Environ 65(2):207–218

    Article  Google Scholar 

  35. Neufeld HS, Meinzer FC, Wisdom CS, Sharifi MR, Rundel PW, Neufeld MS, Goldring Y, Cunningham GL (1988) Canopy architecture of Larrea-Tridentata (dc) cov, a desert shrub—foliage orientation and direct beam radiation interception. Oecologia 75(1):54–60. https://doi.org/10.1007/bf00378813

    Article  PubMed  Google Scholar 

  36. O'Farrell T (2009) Management action plan for the Boulder City conservation easement. Las Vegas, NV; June 2020.

  37. O’Geen AT (2013) Soil water dynamics. Nat Educ Knowl 4(5):9

    Google Scholar 

  38. Oechel WC, Odening WR, Strain BR (1972) Photosynthetic rates of a desert shrub, Larrea-Divaricata cav, under field conditions. Photosynthetica 6(2):183

    Google Scholar 

  39. Ogle K, Reynolds JF (2002) Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata. Plant Cell Environ 25(7):909–921.

    Article  Google Scholar 

  40. Parsons AJ, Abrahams AD (2009) Geomorphology of desert environments. In: Geomorphology of desert environments. Springer, Dordrecht, pp 3–7

    Chapter  Google Scholar 

  41. Peterson FF (1981) Landforms of the basin & range province: defined for soil survey, technical bulletin 28. Max C. Fleishmann College of Agriculture, Nevada

    Google Scholar 

  42. Phillips DL, MacMahon JA (1981) Competition and spacing patterns in desert shrubs. J Ecol 69(1):97–115.

    Article  Google Scholar 

  43. Pielou EC (1962) The use of plant-to-neighbour distances for the detection of competition. J Ecol 50(2):357–367.

    Article  Google Scholar 

  44. R Core Team (2020) R: a language and environment for statistical computing. In: R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/. Accessed 20 June 2020

  45. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Appl Stat 54:507–554

    Google Scholar 

  46. Saco PM, Willgoose GR, Hancock GR (2007) Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Syst Sci 11(6):1717–1730.

    Article  Google Scholar 

  47. Schoeneberger PJ, Wysocki DA (2017) Geomorphic description system, Version 5.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE

  48. Shreve F, Mallery TD (1933) The relation of caliche to desert plants. Soil Sci 35(2):99–113.

    CAS  Article  Google Scholar 

  49. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil survey geographic (SSURGO) database. https://sdmdataaccess.sc.egov.usda.gov. Accessed 04 Oct 2019

  50. Virtanen P, Gommers R, Oliphant, T, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt S, Brett M, Wilson J, Millman K, Mayorov N, Nelson A, Jones E, Kern R, Larson E, Carey C, Polat I, Feng Y, Moore E, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero E, Harris C, Archibald A, Ribeiro A, Pedregosa F, zan Mulbregt P, Vijaykumar A, Bardelli A, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods C, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson D, Hagen D, Pasechnik D, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price G, Ingold G, Allen G, Lee G, Audren H, Probst I, Dietrich J, Silterra J, Webber J, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger J, de Miranda Cardoso J, Reimer J, Harrington J, Rodríguez J, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith N, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb Per P, Lee P, McGibbon R, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel T, Robitaille T, Spura T, Jones T, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko Yaroslav O, Vázquez-Baeza Y (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3), 261–272.

  51. Wainwright J (2009) Desert ecogeomorphology. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments. Springer, Dordrecht, pp 21–66

    Chapter  Google Scholar 

  52. Wasserstein RL, Lazar NA (2016) The ASA statement on p-values: context, process, and purpose. Am Stat 70:2

    Article  Google Scholar 

  53. White LP (1969) Vegetation arcs in Jordan. Journal Ecol 461–464.

  54. Yang Y, Milne B (1997) Water balance modeling project vegetation plots data, Sevilleta LTER database. https://portal.lternet.edu/nis/mapbrowse?packageid=knb-lter-sev.81.185474. Accessed 21 Mar 2019

  55. Yeaton RI, Travis J, Gilinsky E (1977) Competition and spacing in plant communities—Arizona-upland-association. J Ecol 65(2):587–595.

    Article  Google Scholar 

  56. Yetemen O, Istanbulluoglu E, Vivoni ER (2010) The implications of geology, soils, and vegetation on landscape morphology: inferences from semi-arid basins with complex vegetation patterns in Central New Mexico, USA. Geomorphology 116(3–4):246–263.

    Article  Google Scholar 

  57. Young MH, McDonald EV, Caldwell TC, Benner SG, Meadows DG (2004) Hydraulic properties of a desert soil chronosequence in the Mojave Desert, USA. Vadose Zone J 3:956–963

    Article  Google Scholar 

  58. Young MH, Caldwell TG, Meadows DG, Fenstermaker LF (2009) Variability of soil physical and hydraulic properties at the Mojave Global Change Facility, Nevada: implications for water budget and evapotranspiration. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2009.01.015

    Article  Google Scholar 

  59. Young MH, Andrews JH, Caldwell TG, Saylam K (2017) Airborne LiDAR and aerial imagery to assess potential burrow locations for the desert tortoise (Gopherus agassizii). Remote Sens 9(5):16.

    Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Clark County Desert Conservation Program, Las Vegas, Nevada, under contracts CBE 603383-14 and CBE 604014-16. We gratefully acknowledge Doug Merkler for numerous conversations and his insight into Eldorado Valley, Erik Hamerlynck for his thoughts about shrub death, John Andrews for his analytical work, and Evan Stein for his statistical advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael H. Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gearon, J.H., Young, M.H. Geomorphic controls on shrub canopy volume and spacing of creosote bush in northern Mojave Desert, USA. Landscape Ecol 36, 527–547 (2021). https://doi.org/10.1007/s10980-020-01149-8

Download citation

  • Mojave Desert
  • Larrea tridentata
  • Geomorphology
  • Shrub characteristics
  • Soil structure