Skip to main content

Advertisement

Log in

Landscape structure as a mediator of ecosystem service interactions

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Management of multiple ecosystem services (ES) is complex, in part due to synergies and trade-offs among ES. Landscape configuration—the spatial arrangement of patches in a landscape—affects the provision of many ES, and may also influence the strength and direction of these interactions. Understanding how landscape configuration can influence ES interactions may provide landscape managers with a tool to promote positive interactions and avoid negative interactions among ES.

Objectives

We investigate the relationship between ES, their interactions, and landscape configuration across the Montérégie region of Québec, Canada. Through this, we explore the potential for landscape configuration to serve as a tool to mediate ES interactions.

Methods

We quantified seven ES at a 30 m spatial resolution across the Montérégie region of Québec, Canada. The strength and direction of pairwise correlations in ES provision was compared across five classes of landscape configuration.

Results

We found significant variation in response to landscape configuration for almost all pairwise ES interactions. In some cases, two ES showed a trade-off in one type of landscape and a synergy in another. Response to landscape configuration varied by ES, and no single type of landscape configuration was better overall at promoting synergies and reducing trade-offs.

Conclusions

The effect of landscape configuration was relatively small compared to the effect of land use and land cover. However, directed manipulation of landscape configuration may allow managers to enhance the provision of specific ES, or influence the strength and direction of interactions between specific pairs of ES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alverson WS, Waller DM, Solheim SL (1988) Forests too deer: edge effects in northern Wisconsin. Conserv Biol 2:348–358

    Google Scholar 

  • Anderson BJ, Armsworth PR, Eigenbrod F, Thomas CD, Gillings S, Heinemeyer A, Roy DB, Gaston KJ (2009) Spatial covariance between biodiversity and other ecosystem service priorities. J Appl Ecol 46:888–896

    Google Scholar 

  • Anderson RC (1997) Native pests: the impact of deer in highly fragmented habitats. In: Schwartz M (ed) Conservation in highly fragmented landscapes. Springer, New York, pp 117–134

    Google Scholar 

  • Baker ME, Weller DE, Jordan TE (2006) Improved methods for quantifying potential nutrient interception by riparian buffers. Landsc Ecol 21:1327–1345

    Google Scholar 

  • Barrett CB (1996) On price risk and the inverse farm size-productivity relationship. J Dev Econ 51:193–215

    Google Scholar 

  • Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can J For Res 28:1007–1015

    Google Scholar 

  • Bélanger L, Grenier M (2002) Agriculture intensification and forest fragmentation in the St. Lawrence valley, Québec, Canada. Landsc Ecol 17:495–507

    Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404

    PubMed  Google Scholar 

  • Bhattacharya N, Saini GR (1972) Farm size and productivity: a fresh look. Econ Polit Wkly 7:A63–A72

    Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    CAS  PubMed  Google Scholar 

  • Bivand R, Rundel C (2017) rgeos: interface to Geometry Engine - Open Source (‘GEOS’). Version 0.3–26. https://CRAN.R-project.org/package=rgeos

  • Castelle AJ, Johnson AW, Conolly C (1994) Wetland and stream buffer size requirements: a review. J Environ Qual 23:878

    Google Scholar 

  • Chaplin-Kramer R, Jonell M, Guerry A, Lambin EF, Morgan AJ, Pennington D, Smith N, Polasky FJA (2015a) Ecosystem service information to benefit sustainability standards for commodity supply chains. Ann N Y Acad Sci 1355:77–97

    PubMed  Google Scholar 

  • Chaplin-Kramer R, Sharp RP, Mandle L, Sim S, Johnson J, Butnar I, i Canals LM, Eichelberger BA, Ramler I, Mueller C, McLachlan N, Yousefi A, King H, Kareiva PM (2015b) Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc Natl Acad Sci USA 24:7402–7407

    Google Scholar 

  • Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM, Maassen G, Schleuning M, Kalko EKV, Böhning-Gaese K, Steffan-Dewenter I (2014) Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc R Soc B 281:20133148

    PubMed  Google Scholar 

  • Clay GR, Smidt RK (2004) Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landsc Urban Plan 66:239–255

    Google Scholar 

  • Communauté métropolitaine de Montréal (CMM) (2011) Règlement numéro 2011–51 sur le plan métropolitain d’aménagement et de développement. Communauté métropolitaine de Montréal. https://cmm.qc.ca/documentation/reglements/reglement-sur-le-plan-metropolitain-damenagement-et-de-developpement. Accessed 11 Dec 2019

  • Cord AF, Bartkowski B, Beckmann M, Dittrich A, Hermans-Neumann K, Kaim A, Lienhoop N, Locher-Krause K, Preiss J, Schröter-Schlaack C, Schwarz N, Seppelt R, Strauch M, Václavík T, Volk M (2017) Towards systematic analyses of ecosystem service trade-offs and synergies: main concepts, methods and the road ahead. Ecosyst Serv 28:264–272

    Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8:691–703

    Google Scholar 

  • De Costa WAJM, Chandrapala AG (2000) Environmental interactions between different tree species and mung bean (Vigna radiata (L.) Wilczek) in hedgerow intercropping systems in Sri Lanka. J Agron Crop Sci 184:145–152

    Google Scholar 

  • de la Fuente de Val G, Atauri JA, de Lucio JV (2006) Relationship between landscape visual attributes and spatial pattern indices: a test study in Mediterranean-climate landscapes. Landsc Urban Plan 77:393–407

    Google Scholar 

  • de Paula MD, Costa CPA, Tabarelli M (2011) Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop Conserv Sci 4:349–358

    Google Scholar 

  • Di Falco S, Penov I, Aleksiev A, van Rensburg TM (2010) Agrobiodiversity, farm profits and land fragmentation: evidence from Bulgaria. Land Use Policy 27:763–771

    Google Scholar 

  • Direction des inventaires forestiers (DIF) (2019a) Norme d’inventaire écoforestier: Placettes-échantillons permanentes: 5e inventaire: Normes techniques. Ministère des Forêts, de la Faune, et des Parcs du Québec

  • Direction des inventaires forestiers (DIF) (2019b) Norme d’inventaire écoforestier: Placettes-échantillons temporaires: 5e inventaire: Normes techniques. Ministère des Forêts, de la Faune, et des Parcs du Québec

  • Doraiswamy PC, Sinclair TR, Hollinger S, Akhmedov B, Stern A, Prueger J (2005) Application of MODIS derived parameters for regional crop yield assessment. Remote Sens Environ 97:192–202

    Google Scholar 

  • Dramstad W, Fry G, Fjellstad W, Skar B, Helliksen W, Sollund ML, Tveit M, Geelmuyden A, Framstad E (2001) Integrating landscape-based values—Norwegian monitoring of agricultural landscapes. Landsc Urban Plan 57:257–268

    Google Scholar 

  • Dramstad W, Tveit MS, Fjellstad W, Fry G (2006) Relationships between visual landscape preferences and map-based indicators of landscape structure. Landsc Urban Plan 78:465–474

    Google Scholar 

  • Dupras J, Alam M (2014) Urban sprawl and ecosystem services: a half century perspective in the Montreal area (Quebec, Canada). J Environ Plan Policy Manag 17:180–200

    Google Scholar 

  • Etter DR, Hollis KM, Deelen TRV, Ludwig DR, Chelsvig JE, Anchor CL, Warner RE (2002) Survival and movements of white-tailed deer in suburban Chicago, Illinois. J Wildl Manag 66:500

    Google Scholar 

  • Farrell M (2012) Estimating the maple syrup production potential of American forests: an enhanced estimate that accounts for density and accessibility of tappable maple trees. Agrofor Sys 87:631–641

    Google Scholar 

  • Feder G (1985) The relation between farm size and farm productivity. J Dev Econ 18:297–313

    Google Scholar 

  • Fletcher R, Penny D, Evans D, Pottier C, Barbetti M, Kummu M, Lustig T (2008) The water management network of Angkor, Cambodia. Antiquity 82:658–670

    Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154

    CAS  PubMed  Google Scholar 

  • Grêt-Regamey A, Rabe SE, Crespo R, Lautenbach S, Ryffel A, Schlup B (2014) On the importance of non-linear relationships between landscape patterns and the sustainable provision of ecosystem services. Landsc Ecol 29:201–212

    Google Scholar 

  • Hanna DEL, Raudsepp-Hearne C, Bennett EM (2020) Effects of land use, cover, and protection on stream and riparian ecosystem services and biodiversity. Conserv Biol 34:244–255

    PubMed  Google Scholar 

  • Hanna DEL, Tomscha SA, Dallaire CO, Bennett EM (2017) A review of riverine ecosystem service quantification: research gaps and recommendations. J Appl Ecol 55:1299–1311

    Google Scholar 

  • Hayes MJ, Decker WL (1996) Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. Int J Remote Sens 17:3189–3200

    Google Scholar 

  • Hijmans RJ (2017) raster: Geographic Data Analysis and Modeling. Version 2.6–7. https://CRAN.R- project.org/package=raster

  • Hou Y, Lü Y, Chen W, Fu B (2017) Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China. Landsc Ecol 32:1201–1217

    Google Scholar 

  • Howe C, Suich H, Vira B, Mace GM (2014) Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob Environ Change 28:263–275

    Google Scholar 

  • Jama B, Getahun A, Ngugi DN (1991) Shading effects of alley cropped Leucaena leucocephala on weed biomass and maize yield at Mtwapa, Coast Province, Kenya. Agrofor Syst 13:1–11

    Google Scholar 

  • Jopke C, Kreyling J, Maes J, Koellner T (2015) Interactions among ecosystem services across Europe: bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol Ind 49:46–52

    Google Scholar 

  • Kagin J, Taylor JE, Yúnez-Naude A (2015) Inverse productivity or inverse efficiency? Evidence from Mexico. J Dev Stud 52:396–411

    Google Scholar 

  • Keeler BL, Wood SA, Polasky S, Kling C, Filstrup CT, Downing JA (2015) Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes. Front Ecol Environ 13:76–81

    Google Scholar 

  • Kenefic LS, Nyland RD (1999) Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand. North J Appl For 16:43–47

    Google Scholar 

  • Kienast F, Degenhardt B, Weilenmann B, Wäger Y, Buchecker M (2012) GIS-assisted mapping of landscape suitability for nearby recreation. Landsc Urban Plan 105:385–399

    Google Scholar 

  • Kouadio L, Newlands N, Davidson A, Zhang Y, Chipanshi A (2014) Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sens 6:10193–10214

    Google Scholar 

  • Kuusemets V, Mander Ü, Lõhmus K, Ivask M (2001) Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones. Water Sci Technol 44:615–622

    CAS  PubMed  Google Scholar 

  • Lambin EF, Turner B, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George P, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan P, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269

    Google Scholar 

  • Lamy T, Liss KN, Gonzalez A, Bennett EM (2016) Landscape structure affects the provision of multiple ecosystem services. Environ Res Lett 11:124017

    Google Scholar 

  • Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol Ind 11:676–687

    Google Scholar 

  • Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA 111:7492–7497

    CAS  PubMed  Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399

    Google Scholar 

  • Liss KN, Mitchell MG, MacDonald GK, Mahajan SL, Méthot J, Jacob AL, Maguire DY, Metson GS, Ziter C, Dancose K, Martins K, Terrado M, Bennett EM (2013) Variability in ecosystem service measurement: a pollination service case study. Front Ecol Environ 11:414–422

    Google Scholar 

  • Mander Ü, Hayakawa Y, Kuusemets V (2005) Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds. Ecol Eng 24:421–432

    Google Scholar 

  • Mandle L, Bryant BP, Ruckelshaus M, Geneletti D, Kiesecker JM, Pfaff A (2016) Entry points for considering ecosystem services within infrastructure planning: how to integrate conservation with development in order to aid them both. Conserv Lett 9:221–227

    Google Scholar 

  • Margosian ML, Garrett KA, Hutchinson JMS, With KA (2009) Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. Bioscience 59:141–151

    Google Scholar 

  • Martín-López B, Iniesta-Arandia I, García-Llorente M, Palomo I, Casado-Arzuaga I, Amo DGD, Gómez-Baggethun E, Oteros-Rozas E, Palacios-Agundez I, Willaarts B, González JA, Santos-Martín F, Onaindia M, López-Santiago C, Montes C (2012) Uncovering ecosystem service bundles through social preferences. PLoS ONE 7:e38970

    PubMed  PubMed Central  Google Scholar 

  • McGarigal K, Ene E (2015) Fragstats: a spatial pattern analysis program for categorical maps. Version 4.2.1.603. https://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McShea WJ (2012) Ecology and management of white-tailed deer in a changing world. Ann N Y Acad Sci 1249:45–56

    PubMed  Google Scholar 

  • Menalled FD, Marino PC, Gage SH, Landis DA (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9:634

    Google Scholar 

  • Mitchell MGE, Bennett EM, Gonzalez A (2014) Forest fragments modulate the provision of multiple ecosystem services. J Appl Ecol 51:909–918

    Google Scholar 

  • Mitchell MGE, Bennett EM, Gonzalez A, Lechowicz MJ, Rhemtulla JM, Cardille JA, Vanderheyden K, Poirier-Ghys G, Renard D, Delmotte S, Albert CH, Rayfield B, Dumitru M, Huang HH, Larouche M, Liss KN, Maguire DY, Martins KT, Terrado M, Ziter C, Taliana L, Dancose K (2015) The Montérégie connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecol Soc 20:15

    Google Scholar 

  • Mkhabela M, Bullock P, Raj S, Wang S, Yang Y (2011) Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric For Meteorol 151:385–393

    Google Scholar 

  • Mouchet M, Paracchini M, Schulp C, Stürck J, Verkerk P, Verburg P, Lavorel S (2017) Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecol Ind 73:23–28

    Google Scholar 

  • Munroe DK, Croissant C, York AM (2005) Land use policy and landscape fragmentation in an urbanizing region: assessing the impact of zoning. Appl Geogr 25:121–141

    Google Scholar 

  • Niroula GS, Thapa GB (2005) Impacts and causes of land fragmentation, and lessons learned from land consolidation in South Asia. Land Use Policy 22:358–372

    Google Scholar 

  • Ode Å, Miller D (2011) Analysing the relationship between indicators of landscape complexity and preference. Environ Plan B 38:24–40

    Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2:365–371

    Google Scholar 

  • Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science 352:1455–1459

    CAS  PubMed  Google Scholar 

  • Palik BJ, Murphy PG (1990) Disturbance versus edge effects in sugar-maple/beech forest fragments. For Ecol Manag 32:187–202

    Google Scholar 

  • Patenaude G, Hill R, Milne R, Gaveau D, Briggs B, Dawson T (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380

    Google Scholar 

  • Polasky S, Tallis H, Reyers B (2015) Setting the bar: standards for ecosystem services. Proc Natl Acad Sci USA 112:7356–7361

    CAS  PubMed  Google Scholar 

  • Pröbstl U, Wirth V, Elands BHM, Bell S (2010) Management of recreation and nature based tourism in European Forests. Springer, Berlin

    Google Scholar 

  • Qiu J, Turner MG (2013) Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci USA 110:12149–12154

    CAS  PubMed  Google Scholar 

  • Qiu J, Turner MG (2015) Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 6:1–19

    CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. Version 3.5.0. https://www.r-project.org

  • Raudsepp-Hearne C, Peterson GD (2016) Scale and ecosystem services: how do observation, management, and analysis shift with scale: lessons from Québec. Ecol Soc 21:16

    Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107:5242–5247

    CAS  PubMed  Google Scholar 

  • Renard D, Rhemtulla JM, Bennett EM (2015) Historical dynamics in ecosystem service bundles. Proc Natl Acad Sci USA 112:13411–13416

    CAS  PubMed  Google Scholar 

  • Rieb JT, Chaplin-Kramer R, Daily GC, Armsworth PR, Böhning-Gaese K, Bonn A, Cumming GS, Eigenbrod F, Grimm V, Jackson BM, Marques A, Pattanayak SK, Pereira HM, Peterson GD, Ricketts TH, Robinson BE, Schröter M, Schulte LA, Seppelt R, Turner MG, Bennett EM (2017) When, where, and how nature matters for ecosystem services: challenges for the next generation of ecosystem service models. Bioscience 67:820–833

    Google Scholar 

  • Robinson D, Brown D, Currie W (2009) Modelling carbon storage in highly fragmented and human-dominated landscapes: linking land-cover patterns and ecosystem models. Ecol Model 220:1325–1338

    CAS  Google Scholar 

  • Roseberry JL, Woolf A (1998) Habitat-population density relationships for white-tailed deer in Illinois. Wildl Soc Bull 26:252–258

    Google Scholar 

  • Roussel JR, Auty D (2018) lidR: airborne LiDAR data manipulation and visualization for forestry applications. Version 1.6.1. https://CRAN.R-project.org/package=lidR

  • Sarakinos H, Nicholls A, Tubert A, Aggarwal A, Margules C, Sarkar S (2001) Area prioritization for biodiversity conservation in Québec on the basis of species distributions: a preliminary analysis. Biodivers Conserv 10:1419–1472

    Google Scholar 

  • Schirpke U, Hölzler S, Leitinger G, Bacher M, Tappeiner U, Tasser E (2013) Can we model the scenic beauty of an Alpine landscape? Sustainability 5:1080–1094

    Google Scholar 

  • Schwarz N, Hoffmann F, Knapp S, Strauch M (2020) Synergies or trade-offs? Optimizing a virtual urban region to foster plant species richness, climate regulation, and compactness under varying landscape composition. Front Environ Sci 8:16

    Google Scholar 

  • Sen AK (1962) An aspect of Indian agriculture. Econ Wkly 14:243–246

    Google Scholar 

  • Seppelt R, Lautenbach S, Volk M (2013) Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr Opin Environ Sustain 5:458–463

    Google Scholar 

  • Sklenicka P, Šálek ME (2005) Effects of forest edges on the yield of silage maize (Zea mays L.). Die Bodenkultur 56:161

    Google Scholar 

  • Sonter LJ, Watson KB, Wood SA, Ricketts TH (2016) Spatial and temporal dynamics and value of nature-based recreation, estimated via social media. PLoS ONE 11:e0162372

    PubMed  PubMed Central  Google Scholar 

  • Spake R, Bellamy C, Graham LJ, Watts K, Wilson T, Norton LR, Wood CM, Schmucki R, Bullock JM, Eigenbrod F (2019) An analytical framework for spatially targeted management of natural capital. Nat Sustain 2:90–97

    Google Scholar 

  • Spake R, Lasseur R, Crouzat E, Bullock JM, Lavorel S, Parks KE, Schaafsma M, Bennett EM, Maes J, Mulligan M, Mouchet M, Peterson GD, Schulp CJE, Thuiller W, Turner MG, Verburg PH, Eigenbrod F (2017) Unpacking ecosystem service bundles: towards predictive mapping of synergies and trade-offs between ecosystem services. Glob Environ Change 47:37–50

    Google Scholar 

  • Statistics Canada (2019) Crop Condition Assessment Program (CCAP). Statistics Canada. https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5177. Accessed 13 Oct 2019

  • Stewart CM, McShea WJ, Piccolo BP (2007) The impact of white-tailed deer on agricultural landscapes in 3 national historical parks in Maryland. J Wildl Manag 71:1525–1530

    Google Scholar 

  • Sutherland IJ, Bennett EM, Gergel SE (2016) Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. For Ecol Manag 374:61–70

    Google Scholar 

  • Theobald DM, Stevens DL, White D, Urquhart NS, Olsen AR, Norman JB (2007) Using GIS to generate spatially balanced random survey designs for natural resource applications. Environ Manag 40:134–146

    Google Scholar 

  • Tomscha SA, Gergel SE (2016) Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecol Soc 21:43

    Google Scholar 

  • Verhagen W, van der Zanden EH, Strauch M, van Teeffelen AJA, Verburg PH (2018) Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production. Environ Sci Policy 84:186–196

    Google Scholar 

  • Verhagen W, Van Teeffelen AJA, Baggio Compagnucci A, Poggir L, Gimona A, Verburg PH (2016) Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecol 31:1457–1479

    Google Scholar 

  • Vought LBM, Dahl J, Pedersen CL, Lacoursière JO (1994) Nutrient retention in riparian ecotones. Ambio 23:342–348

    Google Scholar 

  • Weller DE, Jordan TE, Correll DL (1998) Heuristic models for material discharge from landscapes with riparian buffers. Ecol Appl 8:1156

    Google Scholar 

  • Wood SA, Guerry AD, Silver JM, Lacayo M (2013) Using social media to quantify nature-based tourism and recreation. Scientific Reports 3:1–7

    Google Scholar 

  • Zaimes GN, Schultz RC, Isenhart TM (2004) Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. J Soil Water Conserv 59:19–27

    Google Scholar 

  • Zheng Y, Sun G, Qin L, Li C, Wu X, Chen X (2009) Rice fields and modes of rice cultivation between 5000 and 2500 BC in east China. J Archaeol Sci 36:2609–2616

    Google Scholar 

  • Ziter C, Bennett EM, Gonzalez A (2013) Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4:85

    Google Scholar 

  • Ziter C, Bennett EM, Gonzalez A (2014) Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 176:893–902

    PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to Erin Crockett for sharing the dataset of above-ground carbon storage in Québec forest sample plots that was used to calibrate the carbon storage layer, to Delphine Renard for sharing the data used to map deer hunting, and to Morgan Crowley for her assistance with Google Earth Engine. This research was made possible with funding from the James B. Reynolds Scholarship for Foreign Study (Dartmouth College), the Richard A. Tomlinson Doctoral Fellowship (McGill University), E.W.R. Steacie Memorial Fellowship (NSERC) and Discovery Grant (NSERC) funds. Cette recherche a été partiellement soutenue par une Bourse commémorative E.W.R. Steacie (CRSNG) et par une Subvention à la découverte (CRSNG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse T. Rieb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3091 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieb, J.T., Bennett, E.M. Landscape structure as a mediator of ecosystem service interactions. Landscape Ecol 35, 2863–2880 (2020). https://doi.org/10.1007/s10980-020-01117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01117-2

Keywords

Navigation