Skip to main content

Using graph theory to analyse and assess changes in Mediterranean woodland connectivity

Abstract

Context

The Portuguese montado is an agro-silvopastoral system, similar to the Spanish dehesa, known for its cultural, economic and ecological value. Despite its importance, contrasting processes such as land abandonment and land use intensification, together with several other factors, have been responsible for montado degradation in the last decades. Biodiversitywise, assuring high levels of connectivity is vital for many species that, in turn, contribute to the natural processes on which a healthy and sustainable montado relies.

Objectives

To study the montado connectivity in the recent decades and infer what the changes represent to the short and medium dispersal species regarding habitat availability.

Methods

The study was conducted in an area delimited by biogeographic boundaries in Southern Portugal where montado is abundant. We used a graph theory based approach and montado maps of 1984, 1999 and 2014 derived from remote sensing.

Results

The results show a loss of montado associated to increasing fragmentation over time. This led to a global connectivity decrement likely to have negative implications for montado species. The most affected species are those more dependent on habitat characteristics, such as forest specialist birds, and those with low mobility that have lost great amounts of habitat not only due to montado loss but also due to the increasing fragmentation that makes suitable patches unreachable.

Conclusions

Given the montado environmental relevance, measures should be taken in order to stop its loss and preserve the core areas that have guaranteed the connectivity over time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Acácio V, Dias FS, Catry FX, Rocha M, Moreira F (2017) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Chang Biol 23:1199–1217. https://doi.org/10.1111/gcb.13487

    Article  PubMed  Google Scholar 

  2. Acácio V, Holmgren M, Jansen PA, Schrotter O (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230

    Article  Google Scholar 

  3. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    PubMed  Article  Google Scholar 

  4. Allen H, Simonson W, Parham E, Santos E, Hotham P (2018) Satellite remote sensing of land cover change in a mixed agro-silvo-pastoral landscape in the Alentejo, Portugal. Int J Remote Sens 39:4663–4683. https://doi.org/10.1080/01431161.2018.1440095

    Article  Google Scholar 

  5. Almeida M, Azeda C, Guiomar N, Pinto-Correia T (2016) The effects of grazing management in montado fragmentation and heterogeneity. Agrofor Syst 90:69–85

    Article  Google Scholar 

  6. Arosa ML, Bastos R, Cabral JA, Freitas H, Costa SR, Santos M (2017) Long-term sustainability of cork oak agro-forests in the Iberian Peninsula: a model-based approach aimed at supporting the best management options for the montado conservation. Ecol Model 343:68–79. https://doi.org/10.1016/j.ecolmodel.2016.10.008

    Article  Google Scholar 

  7. Astudillo PX, Schabo DG, Siddons DC, Farwig N (2019) Patch-matrix movements of birds in the páramo landscape of the southern Andes of Ecuador. Emu 119:53–60

    Article  Google Scholar 

  8. Azevedo JC, Possacos A, Aguiar CF, Amado A, Miguel L, Dias R, Loureiro C, Fernandes PM (2013) The role of holm oak edges in the control of disturbance and conservation of plant diversity in fire-prone landscapes. For Ecol Manag 297:37–48. https://doi.org/10.1016/j.foreco.2013.02.007

    Article  Google Scholar 

  9. Berberoglu S, Lloyd CD, Atkinson PM, Curran PJ (2000) The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput Geosci 26:385–396

    Article  Google Scholar 

  10. Berberoglu S, Satir O, Atkinson PM (2009) Mapping percentage tree cover from Envisat MERIS data using linear and nonlinear techniques. Int J Remote Sens 30:4747–4766

    Article  Google Scholar 

  11. Bergmeier E, Petermann J, Schröder E (2010) Geobotanical survey of wood-pasture habitats in Europe: diversity, threats and conservation. Biodivers Conserv 19:2995–3014

    Article  Google Scholar 

  12. Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  13. Bugalho MN, Caldeira MC, Pereira JS et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286

    Article  Google Scholar 

  14. Bugalho M, Plieninger T, Aronson J, Ellatifi M, Crespo DG (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge, ecology, adaptive management, and restoration, 1st edn. Society for Ecological Restoration International, Island Press, Washington D.C., pp 33–45

    Google Scholar 

  15. Camilo-Alves C, Clara MIE, Ribeiro NMCA (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432

    Article  Google Scholar 

  16. Camilo-Alves C, Vaz M, Clara MIE, Ribeiro NMCA (2017) Chronic cork oak decline and water status: new insights. New For 48:753–772

    Article  Google Scholar 

  17. Catarino L, Godinho C, Pereira P, Luís A, Rabaça JE (2016) Can birds play a role as high nature value indicators of montado system? Agrofor Syst 90:45–56. https://doi.org/10.1007/s10457-014-9761-y

    Article  Google Scholar 

  18. Canteiro C, Pinto-Cruz C, Simões MP, Gazarini L (2011) Conservation of Mediterranean oak woodlands: understorey dynamics under different shrub management. Agrofor Syst 82:161–171

    Article  Google Scholar 

  19. Collinge SK (1998) Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landsc Urban Plan 42:157–168

    Article  Google Scholar 

  20. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  21. Costa JC, Aguiar C, Capelo JH, Lousã M, Neto C (1998) Biogeografia de Portugal Continental. Quercetea 1:5–56

  22. Dickman CR, Doncaster CP (1989) The ecology of small mammals in urban habitats. II. Demography and dispersal. J Anim Ecol 58:119

    Article  Google Scholar 

  23. Dinis C, Surový P, Ribeiro N, Oliveira MRG (2015) The effect of soil compaction at different depths on cork oak seedling growth. New For 46:235–246

    Article  Google Scholar 

  24. Dondina O, Saura S, Bani L, Mateo-Sánchez MC (2018) Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways? Landsc Ecol 33:1741–1756

    Article  Google Scholar 

  25. Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825

    PubMed  Article  Google Scholar 

  26. Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS (2012) A meta-analysis on the impact of different matrix structures on species movement rates. Landsc Ecol 27:1263–1278. https://doi.org/10.1007/s10980-012-9781-9

    Article  Google Scholar 

  27. Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  28. Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927. https://doi.org/10.1007/s10980-009-9376-2

    Article  Google Scholar 

  29. Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:415–415

    Article  Google Scholar 

  30. Fernandes PM (2013) Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc Urban Plan 110:175–182

    Article  Google Scholar 

  31. Fernandes PM, Monteiro-Henriques T, Guiomar N, Loureiro C, Barros AMG (2016) Bottom-up variables govern large-fire size in Portugal. Ecosystems 19:1362–1375. https://doi.org/10.1007/s10021-016-0010-2

    Article  Google Scholar 

  32. Ferrand de Almeida N, Ferrand de Almeida P, Gonçalves H, Sequeira F, Teixeira J, Ferrand de Almeida F (2001) Guia FAPAS Anfíbios e Répteis de Portugal. FAPAS e Câmara Municipal do Porto, Porto

    Google Scholar 

  33. Fisher A, Day M, Gill T, Roff A, Danaher T, Flood N (2016) Large-area, high-resolution tree cover mapping with multi-temporal SPOT5 imagery, New South wales, Australia. Remote Sens. https://doi.org/10.3390/rs8060515

    Article  Google Scholar 

  34. Foltête JC, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  35. Foltête JC, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  36. French K, Mason TJ, Sullivan N (2011) Recruitment limitation of native species in invaded coastal dune communities. Plant Ecol 212:601–609

    Article  Google Scholar 

  37. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  38. Fuller T, Sarkar S (2006) LQGraph: a software package for optimizing connectivity in conservation planning. Environ Model Softw 21:750–755

    Article  Google Scholar 

  39. García de Jalón S, Graves A, Moreno G, Palma JHN, Crous-Durán J, Kay S, Burgess PJ (2018) Forage-SAFE: a model for assessing the impact of tree cover on wood pasture profitability. Ecol Model 372:24–32. https://doi.org/10.1016/j.ecolmodel.2018.01.017

    Article  Google Scholar 

  40. Gaspar P, Mesías FJ, Escribano M, Rodriguez de Ledesma A, Pulido F (2007) Economic and management characterization of dehesa farms: implications for their sustainability. Agrofor Syst 71:151–162. https://doi.org/10.1007/s10457-007-9081-6

    Article  Google Scholar 

  41. Godinho S, Gil A, Guiomar N, Neves N, Pinto-Correia T (2016a) A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agrofor Syst 90:23–34. https://doi.org/10.1007/s10457-014-9769-3

    Article  Google Scholar 

  42. Godinho S, Guiomar N, Gil A (2016b) Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: application in southern Portugal. Int J Appl Earth Obs Geoinf 49:151–162

    Article  Google Scholar 

  43. Godinho S, Guiomar N, Machado R, Santos P, Sá-Sousa P, Fernandes JP, Neves N, Pinto-Correia T (2016c) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor Syst 90:177–192. https://doi.org/10.1007/s10457-014-9757-7

    Article  Google Scholar 

  44. Godinho C, Rabaça JE (2011) Birds like it Corky: the influence of habitat features and management of “montados” in breeding bird communities. Agrofor Syst 82:183–195

    Article  Google Scholar 

  45. Godinho S, Santos AP, Sá-Sousa P (2011) Montado management effects on the abundance and conservation of reptiles in Alentejo, Southern Portugal. Agrofor Syst 82:197–207

    Article  Google Scholar 

  46. Godinho S, Surový P, Sousa A, Gil A (2018) Advances in remote-sensing applications in silvo-pastoral systems. Int J Remote Sens 39:4565–4571

    Article  Google Scholar 

  47. Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138. https://doi.org/10.1890/03-5084

    Article  Google Scholar 

  48. Gómez JM (2003) Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography (Cop) 26:573–584

    Article  Google Scholar 

  49. Grass I, Loos J, Baensch S, Batáry P, Librán-Embid F, Ficiciyan A, Klaus F, Riechers M, Rosa J, Tiede J, Udy K, Westphal C, Wurz A, Tscharntke T (2019) Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat 3:21. https://doi.org/10.1002/pan3.21

    Article  Google Scholar 

  50. Guiomar N, Godinho S, Fernandes PM, Machado R, Neves N, Fernandes JP (2015) Wildfire patterns and landscape changes in Mediterranean oak woodlands. Sci Total Environ 536:338–352. https://doi.org/10.1016/j.scitotenv.2015.07.087

    CAS  Article  PubMed  Google Scholar 

  51. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320

    Article  Google Scholar 

  52. Herrera JM, García D (2010) Effects of forest fragmentation on seed dispersal and seedling establishment in ornithochorous trees. Conserv Biol 24:1089–1098

    PubMed  Article  Google Scholar 

  53. Hofman MPG, Hayward MW, Kelly MJ, Balkenhol N (2018) Enhancing conservation network design with graph-theory and a measure of protected area effectiveness: refining wildlife corridors in Belize, Central America. Landsc Urban Plan 178:51–59

    Article  Google Scholar 

  54. Ibáñez I, Katz DSW, Peltier D, Wolf SM, Connor Barrie BT (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895. https://doi.org/10.1111/1365-2745.12223

    Article  Google Scholar 

  55. Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landsc Ecol 7:63–75

    Article  Google Scholar 

  56. Jordán F (2001) Adding function to structure—comments on Palmarola landscape connectivity. Community Ecol 2:133–135

    Article  Google Scholar 

  57. Jordán F, Báldi A, Orci KM, Rácz I, Varga Z (2003) Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landsc Ecol 18:83–92. https://doi.org/10.1023/A:1022958003528

    Article  Google Scholar 

  58. Kiviniemi K (2008) Effects of fragment size and isolation on the occurrence of four short-lived plants in semi-natural grasslands. Acta Oecologica 33:56–65

    Article  Google Scholar 

  59. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    CAS  PubMed  Article  Google Scholar 

  60. Leiva MJ, Fernández-Alés R (2003) Post-dispersive losses of acorns from Mediterranean savannah-like forests and shrublands. For Ecol Manag 176:265–271

    Article  Google Scholar 

  61. Lopes LE, Buzato S (2007) Variation in pollinator assemblages in a fragmented landscape and its effects on reproductive stages of a self-incompatible treelet, Psychotria suterella (Rubiaceae). Oecologia 154:305–314

    PubMed  Article  Google Scholar 

  62. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  63. Machado R, Godinho S, Pirnat J, Neves N, Santos P (2018) Assessment of landscape composition and configuration via spatial metrics combination: conceptual framework proposal and method improvement. Landsc Res 43:652–664. https://doi.org/10.1080/01426397.2017.1336757

    Article  Google Scholar 

  64. Martín-Martín C, Bunce RGH, Saura S, Elena-Rosselló R (2013) Changes and interactions between forest landscape connectivity and burnt area in Spain. Ecol Indic 33:129–138

    Article  Google Scholar 

  65. Martín Vicente Á, Fernández Alés R (2006) Long term persistence of dehesas. Evidences from history. Agrofor Syst 67:19–28

    Article  Google Scholar 

  66. McEuen AB, Curran LM (2004) Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85:507–518

    Article  Google Scholar 

  67. Mestre F, Ascensão F, Barbosa AM (2019) gDefrag: a graph-based tool to help defragmenting landscapes divided by linear infrastructures. Ecol Model 392:1–5

    Article  Google Scholar 

  68. Muñoz A, Bonal R (2007) Rodents change acorn dispersal behaviour in response to ungulate presence. Oikos 116:1631–1638

    Article  Google Scholar 

  69. Muñoz A, Bonal R, Díaz M (2009) Ungulates, rodents, shrubs: interactions in a diverse Mediterranean ecosystem. Basic Appl Ecol 10:151–160

    Article  Google Scholar 

  70. Neel M, Tumas HR, Marsden BW (2014) Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery. PeerJ 2:e622

    PubMed  PubMed Central  Article  Google Scholar 

  71. Paracchini ML, Petersen J-E, Hoogeveen Y, Bamps C, Burfield I, can Swaay C (2008) High nature value farmland in Europe—An estimate of the distribution patterns on the basis of land cover and biodiversity data. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Office for Official Publications of the European Communities, Luxembourg

  72. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Article  Google Scholar 

  73. Pe’er G, Bonn A, Bruelheide H, Dieker P, Eisenhauer N, Feindt PH, Hagedorn G, Hansjürgens B, Herzon I, Lomba Â, Marquard E, Moreira F, Nitsch H, Oppermann R, Perino A, Röder N, Schleyer C, Schindler S, Wolf C, Zinngrebe Y, Lakner S (2020) Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. https://doi.org/10.1002/pan3.10080

    Article  Google Scholar 

  74. Pereira J (2018) Multi-node protection of landscape connectivity: habitat availability and topological reachability. Community Ecol 19:176–185

    Article  Google Scholar 

  75. Pereira P, Godinho C, Roque I, Rabaça JE (2015) O Montado e as aves: boas práticas para uma gestão sustentável. LabOr – Laboratório de Ornitologia/ICAAM, Universidade de Évora, Câmara Municipal de Coruche, Coruche

  76. Pereira J, Saura S, Jordán F (2017) Single-node vs. multi-node centrality in landscape graph analysis: key habitat patches and their protection for 20 bird species inNESpain. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.12783

    Article  Google Scholar 

  77. Pérez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing drought: results from a long-term data seat and from a rainfall exclusion experiment. Ecology 91:3057–3068

    PubMed  Article  Google Scholar 

  78. Pinto-Correia T (1993) Threatened landscape in Alentejo, Portugal: the ‘montado’ and other 'agro-silvo-pastoral’ systems. Landsc Urban Plan 24:43–48

    Article  Google Scholar 

  79. Pinto-Correia T, Guiomar N, Ferraz-de-Oliveira MI, Sales-Baptista E, Rabaça J, Godinho C, Ribeiro N, Sá Sousa P, Santos P, Santos-Silva C, Simões MP, Belo ADF, Catarino L, Costa P, Fonseca E, Godinho S, Azeda C, Almeida M, Gomes L, Lopes de Castro J, Louro R, Silvestre M, Vaz M (2018) Progress in identifying high nature value montados: impacts of grazing on hardwood rangeland biodiversity. Rangel Ecol Manag 71:612–625. https://doi.org/10.1016/j.rama.2018.01.004

    Article  Google Scholar 

  80. Pinto-Correia T, Mascarenhas J (1999) Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landsc Urban Plan 46:125–131

    Article  Google Scholar 

  81. Pinto-Correia T, Ribeiro N, Potes J (2013) Livro Verde dos Montados. Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM) - Universidade de Évora, Évora

    Google Scholar 

  82. Pinto-Correia T, Ribeiro N, Sá-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor Syst 82:99–104

    Article  Google Scholar 

  83. Pirnat J, Hladnik D (2016) Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landsc Urban Plan 153:129–139

    Article  Google Scholar 

  84. Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in central-western Spain. Ecosystems 13:644–660

    CAS  Article  Google Scholar 

  85. Puerta-Piñero C (2010) Intermediate spatial variations on acorn predation shapes Holm oak establishment within a Mediterranean landscape context. Plant Ecol 210:213–224

    Article  Google Scholar 

  86. Puerta-Piñero C, Pino J, Gómez JM (2012) Direct and indirect landscape effects on Quercus ilex regeneration in heterogeneous environments. Oecologia 170:1009–1020

    PubMed  Article  Google Scholar 

  87. Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Écoscience 12:92–102

    Article  Google Scholar 

  88. Rodriguez-Galiano V, Chica-Olmo M (2012) Land cover change analysis of a Mediterranean area in Spain using different sources of data: multi-seasonal landsat images, land surface temperature, digital terrain models and texture. Appl Geogr 35:208–218

    Article  Google Scholar 

  89. Roellig M, Costa A, Garbarino M, Hanspach J, Hartel T, Jakobsson S, Lindborg R, Mayr S, Plieninger T, Sammul M, Varga A, Fischer J (2018) Post Hoc assessment of stand structure across European wood-pastures: implications for land use policy. Rangel Ecol Manag 71:526–535. https://doi.org/10.1016/j.rama.2018.04.004

    Article  Google Scholar 

  90. Rosalino LM, Rosário do J, Santos-Reis M (2009) The role of habitat patches on mammalian diversity in cork oak agroforestry systems. Acta Oecol 35:507–512

    Article  Google Scholar 

  91. Rosenweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  92. Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaafk CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

  93. Santini L, Saura S, Rondinini C (2016) Connectivity of the global network of protected areas. Divers Distrib 22:199–211

    Article  Google Scholar 

  94. Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416

    Article  Google Scholar 

  95. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  96. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography (Cop) 33:523–537

    Google Scholar 

  97. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  98. Seltmann P, Cocucci A, Renison D, Cierjacks A, Hensen I (2009) Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis BITT. (Rosaceae). Basic Appl Ecol 10:52–60. https://doi.org/10.1016/j.baae.2007.11.008

    Article  Google Scholar 

  99. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. Surová D, Ravera F, Guiomar N, Sastre RM, Pinto-Correia T (2018) Contributions of Iberian Silvo-Pastoral landscapes to the well-being of contemporary society. Rangel Ecol Manag 71:560–570. https://doi.org/10.1016/j.rama.2017.12.005

    Article  Google Scholar 

  101. Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Ecol Soc. https://doi.org/10.5751/ES-00184-040116

    Article  Google Scholar 

  102. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  103. Tiberi R, Branco M, Bracalini M, Croci F, Panzavolta T (2016) Cork oak pests: a review of insect damage and management. Ann For Sci 73:219–232. https://doi.org/10.1007/s13595-015-0534-1

    Article  Google Scholar 

  104. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  105. Van Doorn AM, Pinto-correia T (2007) Differences in land cover interpretation in landscapes rich in cover gradients: reflections based on the montado of South Portugal. Agrofor Syst 70:169–183

    Article  Google Scholar 

  106. Volk XK, Gattringer JP, Otte A, Harvolk-Schöning S (2018) Connectivity analysis as a tool for assessing restoration success. Landsc Ecol 33:371–387

    Article  Google Scholar 

  107. With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by FEDER Funds through the Operational Programme for Competitiveness Factors—COMPETE and National Funds through FCT—Foundation for Science and Technology under the Strategic Projects PEst-C/AGR/UI0115/2011 and PEst-OE/AGR/UI0115/2014. Rui Machado also holds a scholarship (SFRH/BD/137807/2018) granted by FCT.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, R., Godinho, S., Guiomar, N. et al. Using graph theory to analyse and assess changes in Mediterranean woodland connectivity. Landscape Ecol 35, 1291–1308 (2020). https://doi.org/10.1007/s10980-020-01014-8

Download citation

Keywords

  • Montado
  • Connectivity
  • Conefor
  • Remote sensing
  • Land cover change
  • Landscape dynamics