Skip to main content

Advertisement

Log in

A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitat fragmentation can alter species distributions and lead to reduced diversity at multiple scales. Yet, the literature describing fragmentation effects on biodiversity patterns is contradictory, possibly because most studies fail to integrate spatial scale into experimental designs and statistical analyses. Thus, it is difficult to extrapolate the effects of fragmentation to large-scaled systems in which conservation management is of immediate importance.

Objectives

To examine the influence of fragmentation on biodiversity across scales, we (1) estimated the effects of habitat area, connectivity, and quality at both local (i.e. community) and regional (i.e. metacommunity) scales; and (2) evaluated the direction, magnitude, and precision of these estimates at both spatial scales.

Methods

We developed a multi-region community occupancy model to analyze 13 years (2005–2017) of amphibian monitoring data within the National Capital Region, a network of U.S. National Parks.

Results

Overall, we found a positive effect of park size and a negative effect of isolation on species richness at the park-level (i.e. metacommunity), and generally positive effects of wetland area, connectivity, and quality on species richness at the wetland-level (i.e. community), although parameter estimates varied among species. Covariate effects were less precise, but effect sizes were larger, at the local wetland-level as compared to the park-level scale.

Conclusions

Our analysis reveals how scale can mediate interpretation of results from scientific studies, which might help explain conflicting narratives concerning the impacts of fragmentation in the literature. Our hierarchical framework can help managers and policymakers elucidate the relevant spatial scale(s) to target conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Code and data are available on Zenodo (https://doi.org/10.5281/zenodo.3600532) and on the Zipkin Quantitative Ecology Lab Github site (https://github.com/zipkinlab/Wright_etal_2020_LandEcol).

References

  • Adams MJ, Miller DA, Muths E, Corn PS, Grant EH, Bailey LL, Fellers GM, Fisher RN, Sadinski WJ, Waddle H, Walls SC (2013) Trends in amphibian occupancy in the United States. PLoS ONE 8:e64347

    Article  PubMed Central  PubMed  Google Scholar 

  • Azaele S, Maritan A, Cornell SJ, Suweis S, Banavar JR, Gabriel D, Kunin WE (2015) Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales. Methods Ecol Evol 6:324–332

    Article  Google Scholar 

  • Babbitt KJ, Baber MJ, Tarr TL (2003) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552

    Article  Google Scholar 

  • Bailey LL, Grant EHC, Mattfeldt SD (2007) Amphibian monitoring protocol revision 1.3. Natural resource technical report. National Park Service, Fort Collins, Colorado, USA

  • Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37:517–527

    Article  Google Scholar 

  • Bixler RP, McKinney M, Scarlett L (2016) Forging new models of natural resource governance. Front Ecol Environ 14:115

    Article  Google Scholar 

  • Boulinier T, Nichols JD, Sauer JR, Hines JE, Pollock KH (1998) Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79:1018–1028

    Article  Google Scholar 

  • Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J N Am Benthol Soc 30:310–327

    Article  Google Scholar 

  • Butchart SH, Walpole M, Collen B, Van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Cecala KK, Maerz JC, Halstead BJ, Frisch JR, Gragson TL, Hepinstall-Cymerman J, Leigh DS, Jackson CR, Peterson JT, Pringle CM (2018) Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy. Ecosphere 9:e02150

    Article  Google Scholar 

  • Chandler R, Hepinstall-Cymerman J (2016) Estimating the spatial scales of landscape effects on abundance. Landsc Ecol 31:1383–1394

    Article  Google Scholar 

  • Chesson P, Donahue MJ, Melbourne BA, Sears AL (2005) Scale transition theory for understanding mechanisms in metacommunities. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, pp 279–306

    Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748

    Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7:129–146

    Article  Google Scholar 

  • Doerr VA, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147

    Article  Google Scholar 

  • Dorazio RM, Kery M, Royle JA, Plattner M (2010) Models for inference in dynamic metacommunity systems. Ecology 91:2466–2475

    Article  PubMed  Google Scholar 

  • Dorazio RM, Royle JA (2005) Estimating size and composition of biological communities by modeling the occurrence of species. J Am Stat Assoc 100:389–398

    Article  CAS  Google Scholar 

  • Dorazio RM, Royle JA, Söderström B, Glimskär A (2006) Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87:842–854

    Article  PubMed  Google Scholar 

  • Dungan JL, Perry JN, Dale MR, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg M (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol S 48:1–23

    Article  Google Scholar 

  • Fahriga L, Arroyo-Rodríguez V, Bennetta JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Fordg AT, Harrison SP, Jaegeri JAG, Koper N, Martin AE, Martin JL, Metzgerm JP, Morrisona P, Rhodesn JR, Saunders DA, Simberloff D, Smith AC, Tischendorf L, Vellend M, Watling JI (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Article  Google Scholar 

  • Fancy SG, Gross JE, Carter SL (2009) Monitoring the condition of natural resources in US national parks. Environ Monit Assess 151:161–174

    Article  CAS  PubMed  Google Scholar 

  • Fei S, Guo Q, Potter K (2016) Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes. Landsc Ecol 31:1–6

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JA, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB, Cowling A (2004) The challenge of managing multiple species at multiple scales: reptiles in an Australian grazing landscape. J Appl Ecol 41:32–44

    Article  Google Scholar 

  • Fletcher RJ, Burrell NS, Reichert BE, Vasudev D, Austin JD (2016) Divergent perspectives on landscape connectivity reveal consistent effects from genes to communities. Curr Landsc Ecol Rep 1:67–79

    Article  Google Scholar 

  • Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 229:9–15

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Google Scholar 

  • Gelman A, Shirley K (2011) Inference from simulations and monitoring convergence. In: Brooks S, Gelman A, Jones GL, Meng XL (eds) Handbook of markov chain monte carlo. CRC Press, Boca Raton, pp 163–174

    Google Scholar 

  • Goodwin SE, Shriver WG (2014) Using a bird community index to evaluate national parks in the urbanized national capital region. Urban Ecosyst 17:979–990

    Article  Google Scholar 

  • Gottschalk TK, Aue B, Hotes S, Ekschmitt K (2011) Influence of grain size on species–habitat models. Ecol Model 222:3403–3412

    Article  Google Scholar 

  • Grant EHC, Brand AB (2012) National capital region network amphibian monitoring protocol: revision 1.4 10 January 2012. Natural resource technical report. National Park Service, Fort Collins, Colorado, USA

  • Grant EHC, Miller DA, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, Green DM, Hossack BR, Johnson PT (2016) Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep 6:25625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green AW, Hooten MB, Grant EH, Bailey LL (2013) Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. J Appl Ecol 50:1116–1123

    Article  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, MacKenzie DI, Wintle BA, McCarthy MA (2014) Ignoring imperfect detection in biological surveys is dangerous: a response to ‘fitting and interpreting occupancy models’. PLoS ONE 9:e99571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F, NCEAS Species Distribution Modelling Group (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed Central  PubMed  Google Scholar 

  • Haddad NM, Gonzalez A, Brudvig LA, Burt MA, Levey DJ, Damschen EI (2017a) Experimental evidence does not support the habitat amount hypothesis. Ecography 40:48–55

    Article  Google Scholar 

  • Haddad NM, Holt RD Jr, Fletcher RJ, Loreau M, Clobert J (2017b) Connecting models, data, and concepts to understand fragmentation’s ecosystem-wide effects. Ecography 40:1–8

    Article  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hesselbarth MH, Sciaini M, With KA, Wiegand K, Nowosad J (2019) Landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42:1648–1657

    Article  Google Scholar 

  • Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  • Hodgson JA, Moilanen A, Wintle BA, Thomas CD (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152

    Article  Google Scholar 

  • Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46:964–969

    Article  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. AIBS Bull 54:227–233

    Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JW, Watts K, Fuentes-Montemayor E, Macgregor NA, Peace AJ, Park KJ (2015) What can studies of woodland fragmentation and creation tell us about ecological networks? A literature review and synthesis. Landsc Ecol 30:21–50

    Article  Google Scholar 

  • Ibáñez I, Katz DS, Peltier D, Wolf SM, Barrie C, Benjamin T (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess–multiresponse dynamics. J Ecol 102:882–895

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Global Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Keller M, Schimel DS, Hargrove WW, Hoffman FM (2008) A continental strategy for the National ecological observatory network. Fron Ecol Environ 6:282–284

    Article  Google Scholar 

  • Kellner KF (2016) jagsUI: a wrapper around ‘rjags’ to streamline JAGS analyses. R package version 1(4):4

    Google Scholar 

  • Kéry M, Royle JA (2015) Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Academic Press, Cambridge

    Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levy O, Ball BA, Bond-Lamberty B, Cheruvelil KS, Finley AO, Lottig NR, Punyasena SW, Xiao J, Zhou J, Buckley LB, Filstrup CT, Keitt TH, Kellner JR, Knapp AK, Richardson AD, Tcheng D, Toomey M, Vargas R, Voordeckers JW, Wagner T, Williams JW (2014) Approaches to advance scientific understanding of macrosystems ecology. Front Ecol Environ 12:15–23

    Article  Google Scholar 

  • Lindenmayer DB, Likens GE, Andersen A, Bowman D, Bull CM, Burns E, Dickman CR, Hoffmann AA, Keith DA, Liddell MJ, Lowe AJ (2012) Value of long-term ecological studies. Austral Ecol 37:745–757

    Article  Google Scholar 

  • Loe LE, Bonenfant C, Meisingset EL, Mysterud A (2012) Effects of spatial scale and sample size in GPS-based species distribution models: are the best models trivial for red deer management? Eur J Wildl Res 58:195–203

    Article  Google Scholar 

  • Lookingbill TR, Schmit JP, Tessel SM, Suarez-Rubio M, Hilderbrand RH (2014) Assessing national park resource condition along an urban–rural gradient in and around Washington, DC, USA. Ecol Indic 42:147–159

    Article  Google Scholar 

  • Lunn D, Jackson C, Best N, Spiegelhalter D, Thomas A (2012) The BUGS book: a practical introduction to Bayesian analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Univ Press, Princeton

    Google Scholar 

  • MacKenzie DI (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, Cambridge

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Mattfeldt SD, Bailey LL, Grant EH (2009) Monitoring multiple species: estimating state variables and exploring the efficacy of a monitoring program. Biol Conserv 142:720–737

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for categorical and continuous maps. Computer Software Program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • National Park Service (2005) Long-term monitoring plan for natural resources in the National Capital Region Network. Inventory and Monitoring Program, Center for Urban Ecology, Washington, DC

    Google Scholar 

  • National Park Service (2006) A conceptual basis for natural resource monitoring. Center for Urban Ecology, Washington, DC

    Google Scholar 

  • Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21:668–673

    Article  PubMed  Google Scholar 

  • Parsons DJ (2004) Supporting basic ecological research in US national parks: challenges and opportunities. Ecol Appl 14:5–13

    Article  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing, pp 20–22

  • Potter KM, Koch FH, Oswalt CM, Iannone BV (2016) Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent. Landsc Ecol 31:67–84

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair AR, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Resasco J, Bruna EM, Haddad NM, Banks-Leite C, Margules CR (2017) The contribution of theory and experiments to conservation in fragmented landscapes. Ecography 40:109–118

    Article  Google Scholar 

  • Reynolds C, Fletcher RJ, Carneiro CM, Jennings N, Ke A, LaScaleia MC, Lukhele MB, Mamba ML, Sibiya MD, Austin JD, Magagula CN (2018) Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landsc Ecol 33:1–15

    Article  Google Scholar 

  • Reynolds TW, Collins CD, Wassie A, Liang J, Briggs W, Lowman M, Sisay TS, Adamu E (2017) Sacred natural sites as mensurative fragmentation experiments in long-inhabited multifunctional landscapes. Ecography 40:144–157

    Article  Google Scholar 

  • Rothermel BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14:1535–1546

    Article  Google Scholar 

  • Royle JA, Dorazio RM, Link WA (2007) Analysis of multinomial models with unknown index using data augmentation. J Comput Graph Stat 16:67–85

    Article  Google Scholar 

  • Scarlett L, McKinney M (2016) Connecting people and places: the emerging role of network governance in large landscape conservation. Front Ecol Environ 14:116–125

    Article  Google Scholar 

  • Semlitsch RD, Peterman WE, Anderson TL, Drake DL, Ousterhout BH (2015) Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. PLoS ONE 10:e0123055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Snodgrass JW, Komoroski MJ, Bryan AL, Burger J (2000) Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conserv Biol 14:414–419

    Article  Google Scholar 

  • Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, Townsend SE, Carbone C, Rowcliffe JM, Whittington J, Brodie J (2017) Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Fron Ecol Environ 15:26–34

    Article  Google Scholar 

  • Stottlemeyer R (1987) External threats to ecosystems of National Parks. Environ Manage 11:87–89

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Brambilla M, Pedrini P, Tenan S (2016) A multiregion community model for inference about geographic variation in species richness. Meth Ecol Evol 7:783–791

    Article  Google Scholar 

  • Temple SA (1981) Applied island biogeography and the conservation of endangered island birds in the Indian Ocean. Biol Conserv 20:147–161

    Article  Google Scholar 

  • Tobler MW, Zúñiga Hartley A, Carrillo-Percastegui SE, Powell GV (2015) Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J Appl Ecol 52:413–421

    Article  Google Scholar 

  • Todd BD, Luhring TM, Rothermel BB, Gibbons JW (2009) Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J Appl Ecol 46:554–561

    Article  Google Scholar 

  • Turtle SL (2000) Embryonic survivorship of the spotted salamander (Ambystoma maculatum) in roadside and woodland vernal pools in southeastern New Hampshire. J Herpetol 34:60–67

    Article  Google Scholar 

  • Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecol Biogeogr 20:209–217

    Article  Google Scholar 

  • Werner EE, Yurewicz KL, Skelly DK, Relyea RA (2007) Turnover in an amphibian metacommunity: the role of local and regional factors. Oikos 116:1713–1725

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wintle BA, Kujala H, Whitehead A, Cameron A, Veloz S, Kukkala A, Moilanen A, Gordon A, Lentini PE, Cadenhead NCR, Bekessy SA (2019) Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc Natl Acad Sci USA 116:909–914

    Article  CAS  PubMed  Google Scholar 

  • Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25:367–380

    Article  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

  • Zipkin EF, DeWan A, Royle JA (2009) Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J Appl Ecol 46:815–822

    Article  Google Scholar 

  • Zipkin EF, Grant EH, Fagan WF (2012) Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol Appl 22:1962–1972

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NEARMI field crew, especially AE Dietrich, AB Brand, and C Shafer, and the NCRN Inventory & Monitoring Program for data collection and invaluable technical support. This project was funded by the NPS Inventory and Monitoring Program and the USGS Amphibian Research and Monitoring Initiative. This work was supported in part by Michigan State University through computational resources provided by the Institute for Cyber-Enabled Research. All data presented in this study were obtained in accordance with the USGS Patuxent Wildlife Research Center Animal Care and Use Committee protocol (2008-02). The authors declare that they have no conflict of interest. This paper was greatly improved by many thoughtful suggestions by Sarah P. Saunders, Deahn Donner, Adam Duarte, and one anonymous reviewer. This is contribution #681 of the U.S. Geological Survey, Amphibian Research and Monitoring Initiative (ARMI). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Wright.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 197 kb)

Supplementary material 2 (PDF 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, A.D., Grant, E.H.C. & Zipkin, E.F. A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales. Landscape Ecol 35, 529–544 (2020). https://doi.org/10.1007/s10980-019-00963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00963-z

Keywords

Navigation