Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33:121–131
Google Scholar
Alexander JD, Seavy NE, Ralph CJ, Hogoboom B (2006) Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int J Wildland Fire 15:237–245
Google Scholar
Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE (2016) Progressive forest canopy water loss during the 2012–2015 California drought. Proc Natl Acad Sci USA 113:E249–E255
CAS
PubMed
Google Scholar
Barbero R, Abatzoglou J, Larkin N, Kolden CA, Stocks B (2015) Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire 24:892–899
Google Scholar
Beaty RM, Taylor AH (2001) Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA. J Biogeogr 28:955–966
Google Scholar
Bellier E, Monestiez P, Durbec J-P, Candau J-N (2007) Identifying spatial relationships at multiple scales: principal coordinates of neighbour matrices (PCNM) and geostatistical approaches. Ecography 30:385–399
Google Scholar
Birch DS, Morgan P, Kolden CA, Abatzoglou JT, Dillon GK, Hudak AT, Smith AM (2015) Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere 6:1–23
Google Scholar
Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM (2016) mlr: machine Learning in R. J Mach Learn Res 17:1–5
Google Scholar
Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391
Google Scholar
Blomdahl EM, Kolden CA, Meddens AJ, Lutz JA (2019) The importance of small fire refugia in the central Sierra Nevada, California, USA. For Ecol Manag 432:1041–1052
Google Scholar
Boone RB, Krohn WB (2000) Partitioning sources of variation in vertebrate species richness. J Biogeogr 27:457–470
Google Scholar
Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68
Google Scholar
Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055
Google Scholar
Bradstock RA (2009) Effects of large fires on biodiversity in south-eastern Australia: disaster or template for diversity? Int J Wildland Fire 17:809–822
Google Scholar
Bradstock RA, Hammill KA, Collins L, Price O (2010) Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc Ecol 25:607–619
Google Scholar
Bucini G, Saatchi S, Hanan N, Boone RB, Smit I (2009) Woody cover and heterogeneity in the Savannas of the Kruger National Park, South Africa. In: 2009 IEEE International Geoscience and Remote Sensing Symposium. p IV–334
Camp A, Oliver C, Hessburg P, Everett R (1997) Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains. For Ecol Manag 95:63–77
Google Scholar
Cansler CA, McKenzie D (2014) Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol Appl 24:1037–1056
PubMed
Google Scholar
Cardador L, Sardà-Palomera F, Carrete M, Mañosa S (2014) Incorporating spatial constraints in different periods of the annual cycle improves species distribution model performance for a highly mobile bird species. Divers Distrib 20:515–528
Google Scholar
Chen Y (2015) Distinguishing niche and neutral processes: issues in variation partitioning statistical methods and further perspectives. Comput Ecol Softw 5:130
Google Scholar
Coen JL, Stavros EN, Fites-Kaufman JA (2018) Deconstructing the King megafire. Ecol Appl 28:1565–1580
PubMed
Google Scholar
Collins BM, Everett RG, Stephens SL (2011) Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere 2:1–14
Google Scholar
Collins BM, Fry DL, Lydersen JM, Everett R, Stephens SL (2017a) Impacts of different land management histories on forest change. Ecol Appl 27:2475–2486
PubMed
Google Scholar
Collins BM, Miller JD, Thode AE, Kelly M, Van Wagtendonk JW, Stephens SL (2009) Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12:114–128
Google Scholar
Collins BM, Stevens JT, Miller JD, Stephens, SL, Brown PM, North MP (2017b) Alternative characterization of forest fire regimes: incorporating spatial patterns. Landsc Ecol 32:1543–1552
Google Scholar
Coppoletta M, Merriam KE, Collins BM (2016) Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol Appl 26:686–699
PubMed
Google Scholar
Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35:879–888
Google Scholar
Cui W, Perera AH (2008) What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int J Wildland Fire 17:234–244
Google Scholar
Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792
PubMed
Google Scholar
De Marco Jr P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580
PubMed
PubMed Central
Google Scholar
Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933
Google Scholar
Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628
Google Scholar
Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493
Google Scholar
Eidenshink J, Schwind B, Brewer K, Zhu ZL, Quayle B, Howard S (2007) A project for monitoring trends in burn severity. Fire Ecol 3(1):3–21
Google Scholar
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151
Google Scholar
Estes BL, Knapp EE, Skinner CN, Miller JD, Preisler HK (2017) Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 8:e01794
Google Scholar
Fang L, Yang J, Zu J, Li G, Zhang J (2015) Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For Ecol Manag 356:2–12
Google Scholar
Feld CK, Birk S, Eme D, Gerisch M, Hering D, Kernan M, Maileht K, Mischke U, Ott I, Pletterbauer F, Poikane S (2016) Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol Indic 60:71–83
Google Scholar
Finney MA (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47:219–228
Google Scholar
Flint LE, Flint AL, Thorne JH, Boynton R (2013) Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol Process 2:25
Google Scholar
Funk C, Hoell A, Stone D (2014) Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14. Bull Am Meteorol Soc 95:S11
Google Scholar
Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D (2002) The national elevation dataset. Photogramm Eng Remote Sens 68:5–32
Google Scholar
Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41:9017–9023
Google Scholar
Hammill KA, Bradstock RA (2009) Spatial patterns of fire behaviour in relation to weather, terrain and vegetation. Proc R Soc Qld 115:129
Google Scholar
Harris L, Taylor AH (2015) Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecosystems 18:1192–1208
Google Scholar
Harris L, Taylor AH (2017) Previous burns and topography limit and reinforce fire severity in a large wildfire. Ecosphere 8(11):e02019
Google Scholar
Hawkins BA, Diniz-Filho JAF, Mauricio BL, De Marco P, Blackburn TM (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30:375–384
Google Scholar
Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F (2011) Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26:355–370
Google Scholar
Hessburg PF, Agee JK (2003) An environmental narrative of Inland Northwest United States forests, 1800–2000. For Ecol Manag 178:23–59
Google Scholar
Hessburg PF, Agee JK, Franklin JF (2005) Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manag 211:117–139
Google Scholar
Hessburg PF, Miller CL, Parks SA, Povak NA, Taylor AH, Higuera PE, Prichard SJ, North MP, Collins BM, Hurteau MD, Larson AJ, Allen CD, Stephens SL, Rivera-Huerta H, Stevens-Rumann CS, Daniels LD, Gedalof Z, Gray RW, Kane VR, Churchill DJ, Hagmann RK, Spies TA, Cansler CA, Belote RT, Veblen TT, Battaglia MA, Hoffman C, Skinner CN, Safford HD, Salter RB (2019) Climate, environment, and disturbance history govern resilience of Western North American Forests. Front Ecol Evol 7:239
Google Scholar
Heyerdahl EK, Brubaker LB, Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior West, USA. Ecology 82(3):660–678
Google Scholar
Holden ZA, Morgan P, Evans JS (2009) A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. For Ecol Manag 258:2399–2406
Google Scholar
Huang J, Frimpong EA (2015) Using historical atlas data to develop high-resolution distribution models of freshwater fishes. PLoS ONE 10:e0129995
PubMed
PubMed Central
Google Scholar
Johnson M, Crook S, Stuart M, Romero M (2013) Rim fire—preliminary fuel treatment effectiveness report. USDA For Serv Rep
Kane VR, Cansler CA, Povak NA, Kane JT, McGaughey RJ, Lutz JA, Churchill DJ, North MP (2015a) Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure. For Ecol Manag 358:62–79
Google Scholar
Kane VR, Lutz JA, Cansler CA, Povak NA, Churchill DJ, Smith DF, Kane JT, North MP (2015b) Water balance and topography predict fire and forest structure patterns. For Ecol Manag 338:1–13
Google Scholar
Keane RE, Agee JK, Fulé P, Keeley JE, Key C, Kitchen SG, Miller R, Schulte LA (2009) Ecological effects of large fires on US landscapes: benefit or catastrophe? A. Int J Wildland Fire 17:696–712
Google Scholar
Keeley JE, Syphard AD (2019) Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol 15(1):24
Google Scholar
Key CH, Benson NC (2006) Landscape assessment (LA). FIREMON: fire effects monitoring and inventory system. Gen Tech Rep RMRS-GTR-164-CD 1:164
Komac B, Esteban P, Trapero L, Caritg R (2016) Modelization of the current and future habitat suitability of Rhododendron ferrugineum using potential snow accumulation. PLoS ONE 11:e0147324
PubMed
PubMed Central
Google Scholar
LANDFIRE (2012) Existing vegetation type layer, LANDFIRE 1.3.0
Lareau NP, Nauslar NJ, Abatzoglou JT (2018) The Carr Fire Vortex: a case of Pyrotornadogenesis? Geophys Res Lett 45(23):13–107
Google Scholar
Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673
Google Scholar
Lemm JU, Feld CK, Birk S (2019) Diagnosing the causes of river deterioration using stressor-specific metrics. Sci Total Environ 651:1105–1113
CAS
PubMed
Google Scholar
Lentile LB, Smith FW, Shepperd WD (2006) Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. Int J Wildland Fire 15:557–566
Google Scholar
Lundquist JD, Pepin N, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. J Geophys Res Atmos. https://doi.org/10.1029/2008JD009879
Article
Google Scholar
Lutz JA, Key CH, Kolden CA, Kane JT, van Wagtendonk JW (2011) Fire frequency, area burned, and severity: a quantitative approach to defining a normal fire year. Fire Ecol 7:51–65
Google Scholar
Lydersen JM, Collins BM (2018) Change in vegetation patterns over a large forested landscape based on historical and contemporary aerial photography. Ecosystems. https://doi.org/10.1007/s10021-018-0225-5
Article
Google Scholar
Lydersen JM, Collins BM, Brooks ML, Matchett JR, Shive KL, Povak NA, Kane VR and Smith DF (2017) Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol Appl 27:2013–2030
PubMed
Google Scholar
Lydersen JM, Collins BM, Miller JD, Fry DL, Stephens SL (2016) Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol 12:99–116
Google Scholar
Lydersen J, North M (2012) Topographic variation in structure of mixed-conifer forests under an active-fire regime. Ecosystems 15:1134–1146
CAS
Google Scholar
Lydersen JM, North MP, Collins BM (2014) Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes. For Ecol Manag 328:326–334
Google Scholar
Mallek C, Safford H, Viers J, Miller J (2013) Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere 4:1–28
Google Scholar
Martinez AJ, Meddens AJ, Kolden CA, Strand EK, Hudak AT (2019) Characterizing persistent unburned islands within the Inland Northwest USA. Fire Ecol 15:20
Google Scholar
Mascaro J, Asner GP, Knapp DE, Kennedy-Bowdoin T, Martin RE, Anderson C, Higgins M, Chadwick KD (2014) A tale of two “forests”: random forest machine learning aids tropical forest carbon mapping. PLoS ONE 9:e85993
PubMed
PubMed Central
Google Scholar
Meddens AJ, Kolden CA, Lutz JA, Smith AM, Cansler CA, Abatzoglou JT, Meigs GW, Downing WM, Krawchuk MA (2018) Fire refugia: what are they, and why do they matter for global change? BioScience 68(12):944–954
Google Scholar
Meyer MD (2015) Forest fire severity patterns of resource objective wildfires in the southern Sierra Nevada. J For 113:49–56
Google Scholar
Miller JD, Collins BM, Lutz JA, Stephens SL, van Wagtendonk JW, Yasuda DA (2012) Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA. Ecosphere 3(9):1–20
Google Scholar
Miller JD, Knapp EE, Key CH, Skinner CN, Isbell CJ, Creasy RM, Sherlock JW (2009) Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens Environ 113:645–656
Google Scholar
Miller JD, Quayle B (2015) Calibration and validation of immediate post-fire satellite-derived data to three severity metrics. Fire Ecol 11(2):12–30
Google Scholar
Miller JD, Safford H (2012) Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and southern Cascades, California, USA. Fire Ecol 8:41–57
Google Scholar
Miller JD, Thode AE (2007) Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ 109:66–80
Google Scholar
Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J Geophys Res. https://doi.org/10.1029/2009JD013493
Article
Google Scholar
O’Connor CD, Calkin DE, Thompson MP (2017) An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int J Wildland Fire 26:587–597
Google Scholar
Odion DC, Frost EJ, Strittholt JR, Jiang H, Dellasala DA, Moritz MA (2004) Patterns of fire severity and forest conditions in the western Klamath Mountains, California. Conserv Biol 18:927–936
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan
Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193
PubMed
Google Scholar
Parks S, Dobrowski S, Panunto M (2018a) What drives low-severity fire in the Southwestern USA? Forests 9:165
Google Scholar
Parks SA, Holsinger LM, Panunto MH, Jolly WM, Dobrowski SZ, Dillon GK (2018b) High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ Res Lett 13:044037
Google Scholar
Parks SA, Miller C, Nelson CR, Holden ZA (2014) Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas. Ecosystems 17:29–42
Google Scholar
Parks SA, Parisien M-A, Miller C (2011) Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape. Int J Wildland Fire 20:815–828
Google Scholar
Peterson D, Campbell J, Hyer E, Fromm M, Kablick G, Cossuth J, DeLand M (2018) Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. Clim Atmos Sci 1:30
Google Scholar
Peterson DA, Hyer EJ, Campbell JR, Fromm MD, Hair JW, Butler CF, Fenn MA (2015) The 2013 rim fire: implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull Am Meteorol Soc 96:229–247
Google Scholar
Portier J, Gauthier S, Robitaille A, Bergeron Y (2018) Accounting for spatial autocorrelation improves the estimation of climate, physical environment and vegetation’s effects on boreal forest’s burn rates. Landsc Ecol 33:19–34
PubMed
Google Scholar
Povak NA, Hessburg PF, Salter RB (2018) Evidence for scale-dependent topographic controls on wildfire spread. Ecosphere 9:e02443
Google Scholar
Prichard SJ, Kennedy MC (2014) Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event. Ecol Appl 24:571–590
PubMed
Google Scholar
Prichard SJ, Stevens-Rumann CS, Hessburg PF (2017) Tamm Review: shifting global fire regimes: Lessons from reburns and research needs. For Ecol Manag 396:217–233
Google Scholar
PRISM Climate Group (2013) PRISM Climate Data. Or State Univ http://prism.oregonstate.edu, Created 10 July 2012:
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Qiu Y, Mei J (2018) RSpectra: Solvers for Large-Scale Eigenvalue and SVD Problems
Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Guebas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodivers Conserv 22:1369–1390
Google Scholar
Reshetnikov AN, Ficetola GF (2011) Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic. Biol Invasions 13:2967–2980
Google Scholar
Rollins MG, Morgan P, Swetnam T (2002) Landscape-scale controls over twentieth century fire occurrence in two large Rocky Mountain (USA) wilderness areas. Landsc Ecol 17:539–557
Google Scholar
Ryo M, Yoshimura C, Iwasaki Y (2018) Importance of antecedent environmental conditions in modeling species distributions. Ecography 41:825–836
Google Scholar
Safford HD, Stevens J, Merriam K, Meyer MD, Latimer AM (2012) Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For Ecol Manag 274:17–28
Google Scholar
Scholl AE, Taylor AH (2010) Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecol Appl 20:362–380
PubMed
Google Scholar
Singleton MP, Thode AE, Meador AJS, Iniguez JM (2019) Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For Ecol Manag 433:709–719
Google Scholar
Stavros EN, Abatzoglou JT, McKenzie D, Larkin NK (2014) Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Clim Change 126:455–468
Google Scholar
Steel ZL, Koontz MJ, Safford HD (2018) The changing landscape of wildfire: burn pattern trends and implications for California’s yellow pine and mixed conifer forests. Landsc Ecol 33:1159–1176
Google Scholar
Stephens SL, Burrows N, Buyantuyev A, Gray RW, Keane RE, Kubian R, Liu S, Seijo F, Shu L, Tolhurst KG, van Wagtendonk JW (2014) Temperate and boreal forest mega-fires: characteristics and challenges. Front Ecol Environ 12:115–122
Google Scholar
Stevens JT, Collins BM, Miller JD, North MP, Stephens SL (2017) Changing spatial patterns of stand-replacing fire in California conifer forests. For Ecol Manag 406:28–36
Google Scholar
Stevens-Rumann CS, Prichard SJ, Strand EK, Morgan P (2016) Prior wildfires influence burn severity of subsequent large fires. Can J For Res 46:1375–1385
Google Scholar
Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinform 9:307
Google Scholar
Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8(1):25
Google Scholar
Thompson JR, Spies TA (2009) Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For Ecol Manag 258:1684–1694
Google Scholar
Václavík T, Kupfer JA, Meentemeyer RK (2012) Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). J Biogeogr 39:42–55
Google Scholar
Van de Water K, North M (2010) Fire history of coniferous riparian forests in the Sierra Nevada. For Ecol Manag 260(3):384–395
Google Scholar
van Wagtendonk JW (2007) The history and evolution of wildland fire use. Fire Ecol 3(2):3–17
Google Scholar
van Wagtendonk K (2012) Fires in previously burned areas: fire severity and vegetation interactions in Yosemite National Park. 2011 George Wright Society Biennial Conference on Parks, Protected Areas, and Cultural Sites. George Wright Society, Hancock, pp 356–363
Google Scholar
van Wagtendonk JW, van Wagtendonk KA, Thode AE (2012) Factors associated with the severity of intersecting fires in Yosemite National Park, California, USA. Fire Ecol 8:11–31
Google Scholar
Werth PA, Potter BE, Alexander ME, Clements CB, Cruz MG, Finney MA, Forthofer JM, Goodrick SL, Hoffman C, Jolly WM, McAllister SS, Ottmar RD, Parsons RA (2016) Synthesis of knowledge of extreme fire behavior: volume 2 for fire behavior specialists, researchers, and meteorologists. Gen Tech Rep PNW-GTR-891 Portland US Dep Agric For Serv Pac Northwest Res Stn 258 P 891
Westerling AL (2016) Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Phil Trans R Soc B 371:20150178
PubMed
PubMed Central
Google Scholar
Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER (2015) Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett 42:6819–6828
Google Scholar
Wimberly MC, Cochrane MA, Baer AD, Pabst K (2009) Assessing fuel treatment effectiveness using satellite imagery and spatial statistics. Ecol Appl 19:1377–1384
PubMed
Google Scholar