Movement responses of common noctule bats to the illuminated urban landscape

  • Christian C. VoigtEmail author
  • Julia M. Scholl
  • Juliane Bauer
  • Tobias Teige
  • Yossi Yovel
  • Stephanie Kramer-Schadt
  • P. Gras
Research Article



Cities are a challenging habitat for obligate nocturnal mammals because of the ubiquitous use of artificial light at night (ALAN). How nocturnal animals move in an urban landscape, particularly in response to ALAN is largely unknown.


We studied the movement responses, foraging and commuting, of common noctules (Nyctalus noctula) to urban landscape features in general and ALAN in particular.


We equipped 20 bats with miniaturized GPS loggers in the Berlin metropolitan area and related spatial positions of bats to anthropogenic and natural landscape features and levels of ALAN.


Common noctules foraged close to ALAN only next to bodies of water or well vegetated areas, probably to exploit swarms of insects lured by street lights. In contrast, they avoided illuminated roads, irrespective of vegetation cover nearby. Predictive maps identified most of the metropolitan area as non-favoured by this species because of high levels of impervious surfaces and ALAN. Dark corridors were used by common noctules for commuting and thus likely improved the permeability of the city landscape.


We conclude that the spatial use of common noctules, previously considered to be more tolerant to light than other bats, is largely constrained by ALAN. Our study is the first individual-based GPS tracking study to show sensitive responses of nocturnal wildlife to light pollution. Approaches to protect urban biodiversity need to include ALAN to safeguard the larger network of dark habitats for bats and other nocturnal species in cities.


Urbanization GPS tracking Artificial light at night ALAN Habitat use Preference Movement Common noctule bat 



The work was partly funded by the German Federal Ministry of Education and Research BMBF within the Collaborative Project Bridging in Biodiversity Science-BIBS (Funding No. 01LC1501A-H).

Author contributions

CCV conceived the study. CCV, YY and SKS ensured funding and designed methodology. JMS, JB, TT and CCV conducted field work. JMS, JB, SKS and PG analysed the data. CCV, JMS, JB and PG wrote the draft manuscript and all authors commented on it.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10980_2019_942_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1480 kb)


  1. Azam C, Le Viol I, Julien JF, Bas Y, Kerbiriou C (2016) Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landsc Ecol 31:2471–2483CrossRefGoogle Scholar
  2. Baker PJ, Harris S (2007) Urban mammals: what does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mamm Rev 37:297–315Google Scholar
  3. Bartoniĉka T, Zukal J (2003) Flight activity and habitat use of four bat species in a small town revealed by bat detectors. Folia Zool 52:155–166Google Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Beyer HL, Haydon DT, Morales HM, Frair HL, Hebblewhite M, Mitchell M, Matthiopoulos J (2010) The interpretation of habitat preference metrics under use—availability designs. Philos Trans R Soc B 365:2245–2254CrossRefGoogle Scholar
  6. Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  7. Calenge C (2006) The package adehabitat for the R Software: a tool for the analysis of space habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  8. Ciechanowski M (2015) Habitat preferences of bats in anthropogenically altered, mosaic landscapes of northern Poland. Eur J Wildl Res 61:415–428CrossRefGoogle Scholar
  9. Gaisler J, Zukal J, Rehak Z, Homolka M (1998) Habitat preference and flight activity of bats in a city. J Zool 244(3):439–445CrossRefGoogle Scholar
  10. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760PubMedCrossRefPubMedCentralGoogle Scholar
  11. Hale JD, Fairbrass AJ, Matthews TJ, Davies G, Sadler JP (2015) The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob Change Biol 21:2467–2478CrossRefGoogle Scholar
  12. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large UK conurbation. PLoS ONE 7:e33300PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hartig F (2018) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.0.
  14. Heim O, Lenski J, Schulze J, Jung K, Kramer-Schadt S, Eccard JA, Voigt CC (2017) The relevance of vegetation structures and small bodies of water for bats foraging above farmland. Basic Appl Ecol 27:9–19CrossRefGoogle Scholar
  15. Heim O, Schröder A, Eccard J, Jung K, Voigt CC (2016) Seasonal activity patterns of European bats above intensively used farmland. Agric Ecosyst Environ 233:130–139CrossRefGoogle Scholar
  16. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  17. Hölker F, Wolter C, Perkin EK, Tockner K (2010) Light pollution as a biodiversity threat. Trends Ecol Evol 25:681–682PubMedCrossRefGoogle Scholar
  18. Jacobs J (1974) Quantiative measurement of food selection: a modification of the forage ratio and Ivlev’s electivity index. Oecologia 14:413–417PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kronwitter F (1988) Population structure, habitat use and activity patterns of the noctule bat, Nyctalus noctula Schreb., 1774 (Chiroptera: Vespertilionidae) revealed by radotracking. Myotis 26:23–85Google Scholar
  20. Kuechly HU, Kyba CC, Ruhtz T, Lindemann C, Wolter C, Fischer J, Hölker F (2012) Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens Environ 126:39–50CrossRefGoogle Scholar
  21. Kyba CC, Hölker F (2013) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landsc Ecol 28:1637–1640CrossRefGoogle Scholar
  22. Laforge A, Pauwels J, Faure B, Bas Y, Kerbiriou C, Fonderflick J, Besnard A (2019) Reducing light pollution improves connectivity for bats in urban landscapes. Landsc Ecol 34:793–809CrossRefGoogle Scholar
  23. Lehnert LS, Kramer-Schadt S, Teige T, Hoffmeister U, Popa-Lisseanu A, Bontadina F, Ciechanowski M, Dechmann DKN, Kravchenko K, Presetnik P, Starrach M, Straube M, Zoephel U, Voigt CC (2018) Variability and repeatability of noctule bat migration in Central Europe: evidence for partial and differential migration. Proc R Soc Lond B 285:20182174CrossRefGoogle Scholar
  24. LfU (2015) Kartierung von Biotopen, Gesetzlich Geschützten Biotopen (§ 30 Bnatschg Und § 18 Bbgnatschag) Und Ffh-Lebensraumtypen im Land Brandenburg.
  25. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198CrossRefGoogle Scholar
  26. Lowry H, Lill A, Wong B (2013) Behavioural responses of wildlife to urban environments. Biol Rev 88:537–549PubMedCrossRefPubMedCentralGoogle Scholar
  27. Luck GW, Smallbone L, Threlfall C, Law B (2013) Patterns in bat functional guilds across multiple urban centres in south-eastern Australia. Landsc Ecol 28:455–469CrossRefGoogle Scholar
  28. Mackie IJ, Racey PA (2007) Habitat use varies with reproductive state in noctule bats (Nyctalus noctula): implications for conservation. Biol Conserv 140:70–77CrossRefGoogle Scholar
  29. Martin J, Calenge C, Quenette PY, Allainé D (2008) Importance of movement constraints in habitat selection studies. Ecol Model 213:257–262CrossRefGoogle Scholar
  30. Mathews F, Roche N, Aughney T, Jones N, Day J, Baker J, Langton S (2015) Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Phil Trans R Soc B 370:20140124PubMedCrossRefPubMedCentralGoogle Scholar
  31. McDonnell MJ, Hahs AK (2015) Adaptation and adaptedness of organisms to urban environments. Ann Rev Ecol Evol Syst 46:261–280CrossRefGoogle Scholar
  32. Michelot T, Langrock R, Patterson TA (2016) moveHMM: an Rpackage for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7:1308–1315CrossRefGoogle Scholar
  33. Michelot T, Langrock R, Patterson T, Rexstadt E (2015) moveHMM: animal movement modelling using hidden marcov models. R Package Version 11Google Scholar
  34. Pauwels J, Le Viol I, Azam C, Valet N, Julien JF, Bas Y, Kerbiriou C (2019) Accounting for artificial light impact on bat activity for a biodiversity-friendly urban planning. Landsc Urban Plan 183:12–25CrossRefGoogle Scholar
  35. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13Google Scholar
  36. Polak T, Korine C, Yair S, Holderied MW (2011) Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J Zool 285:21–27Google Scholar
  37. QGIS Development Team (2017) QGIS geographic information system. Open Source Geospatial Foundation Project.
  38. R Core Team (2017) R: a language and environment for statistical computing. R Core Team, ViennaGoogle Scholar
  39. Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island Press, New YorkGoogle Scholar
  40. Roeleke M, Blohm T, Kramer-Schadt S, Yovel Y, Voigt CC (2016) Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci Rep 6:28961PubMedPubMedCentralCrossRefGoogle Scholar
  41. Roeleke M, TeigeT Hoffmeister H, Klingler F, Voigt CC (2018) Aerial-hawking bats adjust their use of space to the lunar cycle. Mov Ecol 6:11PubMedPubMedCentralCrossRefGoogle Scholar
  42. Russo D, Ancilotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol 80:205–212CrossRefGoogle Scholar
  43. Russo D, Cistrone L, Libralato N, Korine C, Jones G, Ancilotto L (2017) Adverse effects of artificial illumination on bat drinking activity. Anim Conserv 20:492–501CrossRefGoogle Scholar
  44. Rydell J (1992) Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 6:744–750CrossRefGoogle Scholar
  45. Sadler JP, Small EC, Fiszpan H, Telfer MG, Niemela J (2006) Investigating environmental variation and landscape characteristics of an urban-rural gradient using woodland carabid assemblages. J Biogeogr 33:1126–1138CrossRefGoogle Scholar
  46. Seto KC, Fragkias M, Guneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS ONE 6:9Google Scholar
  47. Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Nat Acad Sci 109:16083–16088PubMedCrossRefPubMedCentralGoogle Scholar
  48. Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc Lond B 278:1646–1652CrossRefGoogle Scholar
  49. Spoelstra K, van Grunsven RHA, Ramakers JJC, Ferguson KB, Raap T, Donners M, Veenendaal EM, Visser ME (2017) Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light. Proc R Soc B 284:20170075PubMedCrossRefPubMedCentralGoogle Scholar
  50. Stone EL, Jones G, Harris S (2009) Street lighting disturbs commuting bats. Curr Biol 19:1123–1127PubMedCrossRefPubMedCentralGoogle Scholar
  51. Straka TM, Lentini PE, Lumsden LF, Wintle BA, van der Ree R (2016) Urban bat communities are affected by wetland size, quality, and pollution levels. Ecol Evol 6:4761–4774PubMedPubMedCentralCrossRefGoogle Scholar
  52. Straka TM, Wolf M, Gras P, Buchholz S, Voigt CC (2019) Tree cover mediates the effect of artificial light on urban bats. Front Ecol Evol 7:91CrossRefGoogle Scholar
  53. Threlfall C, Law B, Penman T, Banks PB (2011) Ecological processes in urban landscapes: mechanisms influencing the distribution and activity of insectivorous bats. Ecography 34:814–826CrossRefGoogle Scholar
  54. Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306CrossRefGoogle Scholar
  55. Umweltatlas Berlin (2010) Umweltatlas Berlin/Stadtstruktur-Flächentypen differenziert 2010 (Umweltatlas).
  56. UNPD (2012) World urbanization prospects: the 2011 revision. United Nations Population Division, New YorkGoogle Scholar
  57. Voigt CC, Azam C, Dekker J, Ferguson J, Fritze M, Gazaryan S, Hölker F, Jones G, Leader N, Lewanzik D, Limpens HJGA, Mathews F, Rydell J, Schofield H, Spoelstra K, Zagmajster M (2018) Guidelines for consideration of bats in lighting projects. EUROBATS Publication Series No. 8. UNEP/EUROBATS Secretariat, Bonn, p 62Google Scholar
  58. Zeale MRK, Stone EL, Zeale E, Browne WJ, Harris S, Jones G (2018) Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats. Glob Change Biol 24:5909–5918CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  2. 2.Institute of BiologyFreie Universität BerlinBerlinGermany
  3. 3.Berlin-Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
  4. 4.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  5. 5.Faculty of Landscape Management and Nature ConversationEberswalde University for Sustainable DevelopmentEberswaldeGermany
  6. 6.Büro für faunistisch-ökologische FachgutachtenBerlinGermany
  7. 7.The George S. WiseFaculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  8. 8.Department of EcologyTechnische Universität BerlinBerlinGermany

Personalised recommendations