Skip to main content

Advertisement

Log in

Carnivore community response to anthropogenic landscape change: species-specificity foils generalizations

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Human exploitation of landscapes result in widespread species range loss and spatial community redistribution. Reduced species occupancy for large ranging terrestrial carnivore communities in disturbed or fragmented landscapes is a common outcome but the underlying mechanisms are ambiguous and the complexity of interacting mechanisms often under-appreciated.

Objectives

To examine for similarity in spatial responses of carnivores to human-mediated landscape disturbance, we hypothesize common mechanism(s) to manifest at the community-level. To then incorporate a competitive surface, we evaluate the relative role interspecific interactions may play, where some species are benefited by altered habitat conditions.

Methods

We deployed camera-trap arrays across a systematic grid-based study design to quantify carnivore occurrence. We tested hypotheses to understand spatial patterns of carnivore occurrence, in relation to biophysical and anthropogenic landscape factors, using multivariate analysis and species distribution models under an information-theoretic approach.

Results

Differential response was found within the carnivore community, with some species occurring more frequently in disturbed landscapes while others displayed landscape scale avoidance of more highly disturbed areas. Interspecific interactions played an additive role to human-mediated response by some carnivores—suggesting generalist, human-adapted species, exaggerate interference interactions for other more sensitive species.

Conclusions

Generalizable patterns are highly sought as clues to consistent mechanisms effecting changes to spatial distributions, but evidence weighs heavily in favour of species-specificity in responses implicating mechanisms that likewise vary for each species. Our findings underscore the value of a trait-based and community-level approach to understanding and managing the effects of anthropogenic land-use change on vertebrate biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberta Biodiversity Monitoring Institute (ABMI) (2010) Alberta human footprint maps. http://www.abmi.ca/abmi/rawdata/rawdataselection.jsp. Accessed Jan 2013

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis: spatial coexistence mechanisms. Ecol Lett 6:1109–1122

    Google Scholar 

  • Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Google Scholar 

  • Arjo WM, Pletscher DH (1999) Behavioral responses of coyotes to wolf recolonization in northwestern Montana. Can J Zool 77:1919–1927

    Google Scholar 

  • Banks-Leite C, Pardini R, Boscolo D, Cassano CR, Püttker T, Barros CS, Barlow J (2014) Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J Appl Ecol 51:849–859

    PubMed  PubMed Central  Google Scholar 

  • Berger KM, Gese EM (2007) Does interference competition with wolves limit the distribution and abundance of coyotes? J Anim Ecol 76:1075–1085

    PubMed  Google Scholar 

  • Beschta RL, Ripple WJ (2009) Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol Conserv 142:2401–2414

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Google Scholar 

  • Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol 19:1–20

    Google Scholar 

  • Brodie JF, Post E (2010) Nonlinear responses of wolverine populations to declining winter snowpack. Popul Ecol 52:279–287

    Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS (2006) Global biodiversity conservation priorities. Science 313:58–61

    CAS  PubMed  Google Scholar 

  • Burton AC, Sam MK, Kpelle DG, Balangtaa C, Buedi EB, Brashares JS (2011) Evaluating persistence and its predictors in a West African carnivore community. Biol Conserv 144:2344–2353

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    CAS  PubMed  Google Scholar 

  • Caro TM, Stoner CJ (2003) The potential for interspecific competition among African carnivores. Biol Conserv 110:67–75

    Google Scholar 

  • Copeland RE, Yates I Kojola, May R (2010) The bioclimatic envelope of the wolverine (Gulo gulo): do climatic constraints limit its geographic distribution? Can J Zool 88:233–246

    Google Scholar 

  • Crawley MJ (2007) The R book chichester. Wiley, UK

  • Crooks KR (2002) Relative sensitivities of Mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    CAS  Google Scholar 

  • Díaz S, Fargione J, Iii FSC, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    PubMed  PubMed Central  Google Scholar 

  • Dickie M, Serrouya R, McNay RS, Boutin S (2017) Faster and farther: wolf movement on linear features and implications for hunting behaviour. J Appl Ecol 54:253–263

    Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science 333:301–306

    CAS  Google Scholar 

  • Ewers RM, Didham RK, Pearse WD, Lefebvre V, Rosa IMD, Carreiras JMB, Lucas RM, Reuman DC (2013) Using landscape history to predict biodiversity patterns in fragmented landscapes. Ecol Lett 16:1221–1233

    PubMed  PubMed Central  Google Scholar 

  • Farr MT, Green DS, Holekamp KE, Roloff GJ, Zipkin EF (2019) Multispecies hierarchical modeling reveals variable responses of African carnivores to management alternatives. Ecol Appl 29:e01845

    PubMed  Google Scholar 

  • Fisher JT, Anholt B, Bradbury S, Wheatley M, Volpe JP (2013a) Spatial segregation of sympatric marten and fishers: the influence of landscapes and species-scapes. Ecography 36:240–248

    Google Scholar 

  • Fisher JT, Anholt B, Volpe JP (2011) Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecol Evol 1:517–528

    PubMed  PubMed Central  Google Scholar 

  • Fisher JT, Bradbury S (2014) A multi-method hierarchical modeling approach to quantifying bias in occupancy from noninvasive genetic tagging studies. J Wildl Manag 78:1087–1095

    Google Scholar 

  • Fisher JT, Bradbury S, Anholt B, Nolan L, Roy L, Volpe JP, Wheatley M (2013b) Wolverines (Gulo gulo luscus) on the rocky mountain slopes: natural heterogeneity and landscape alteration as predictors of distribution. Can J Zool 91:406–716

    Google Scholar 

  • Fisher JT, Burton AC (2018) Wildlife winners and losers in an oil sands landscape. Front Ecol Environ 16(6):323–328

    Google Scholar 

  • Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS (2005) Wolves influence Elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86:1320–1330

    Google Scholar 

  • Gehrt SD, Clark WR (2003) Raccoons, coyotes, and reflections on the mesopredator release hypothesis. Wildl Soc Bull 31:836–842

    Google Scholar 

  • Gittleman JL (2001) Carnivore conservation. Cambridge University Press, Irvinton

    Google Scholar 

  • Glen AS, Dickman CR (2005) Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol Rev 80:387–401

    PubMed  Google Scholar 

  • Global Forest Watch Canada (2014) State of Alberta’s forests with a focus on the Eastern slopes. Presentation and maps. http://www.globalforestwatch.ca/node/205. Accessed Jan 2013

  • Godsoe W, Harmon LJ (2012) How do species interactions affect species distribution models? Ecography 35:811–820

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21:1534–1547

    Google Scholar 

  • Hebblewhite M, White CA, Nietvelt CG, McKenzie JA, Hurd TE, Fryxell JM, Bayley SE, Paquet PC (2005) Human activity mediates a trophic cascade caused by wolves. Ecology 86:2135–2144

    Google Scholar 

  • Heim N, Fisher JT, Clevenger A, Paczkowski J, Volpe J (2017) Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.). Ecol Evol 7:8903–8914

    PubMed  PubMed Central  Google Scholar 

  • Hody JW, Kays R (2018) Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys 759:81–97

    Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci 106:19659–19665

    CAS  PubMed  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  PubMed  Google Scholar 

  • Koen EL (2008) Surveying and monitoring wolverines in Ontario and other lowland, boreal forest habitats: recommendations and protocols. Northwest Science and Information Section, Ministry of Natural Resources, Peterborough

    Google Scholar 

  • Konstant P, Flick J, Pilgrim S, Oldfield G, Magin C, Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol 52:675–685

    Google Scholar 

  • Krebs J, Lofroth EC, Parfitt I (2007) Multiscale habitat use by wolverines in British Columbia, Canada. J Wildl Manag 71:2180–2192

    Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    PubMed  Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    PubMed  Google Scholar 

  • Leu M (2008) The human footprint in the west: a large-scale analysis of anthropogenic impacts. Ecol Appl 18:1119–1139

    PubMed  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci USA 68:1246–1248

    CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Welsh A, Blanchard W, Tennant P, Donnelly C (2014) Exploring co-occurrence of closely-related guild members in a fragmented landscape subject to rapid transformation. Ecography 38:251–260

    Google Scholar 

  • Linnell JDC, Strand O (2000) Interference interactions, co-existence and conservation of mammalian carnivores. Divers Distrib 6:169–176

    Google Scholar 

  • Litvaitis JA, Villafuerte R (1996) Intraguild predation, mesopredator release, and prey stability. Conserv Biol 10:676–677

    Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Long RA, MacKay P, Ray J, Zielinski W (2008) Noninvasive survey methods for carnivores. Island Press

  • MacKenzie DI (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, New York

    Google Scholar 

  • Markovchick-Nicholls L, Regan HM, Deutschman DH, Widyanata A, Martin B, Noreke L, Ann Hunt T (2008) Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv Biol 22:99–109

    PubMed  Google Scholar 

  • Matthiopoulos J (2011) How to be a quantitative ecologist: the “A to R” of green mathematics and statistics. Wiley, New York

    Google Scholar 

  • May R, Landa A, van Dijk J, Linnell JDC, Andersen R (2006) Impact of infrastructure on habitat selection of wolverines Gulo gulo. Wildl Biol 12:285–295

    Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McDermid GJ, Hall RJ, Sanchez-Azofeifa GA, Franklin SE, Stenhouse GB, Kobliuk T, LeDrew EF (2009) Remote sensing and forest inventory for wildlife habitat assessment. For Ecol Manag 257:2262–2269

    Google Scholar 

  • McKenzie HW, Merrill EH, Spiteri RJ, Lewis MA (2012) How linear features alter predator movement and the functional response. Interface Focus 2:205–216

    PubMed  PubMed Central  Google Scholar 

  • Mittlebach Gary G (2012) Community ecology. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Muray DL, Larivière S (2002) The relationship between foot size of wild canids and regional snow conditions: evidence for selection against a high footload? J Zool 256:289–299

    Google Scholar 

  • Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 6:48–59

    Google Scholar 

  • Newsome TM, Ripple WJ (2014) A continental scale trophic cascade from wolves through coyotes to foxes. J Anim Ecol 84:49–59

    PubMed  Google Scholar 

  • O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology. Springer, New York

    Google Scholar 

  • Ordeñana MA, Crooks KR, Boydston EE, Fisher RN, Lyren LM, Siudyla S, Haas CD, Harris S, Hathaway SA, Turschak GM, Miles AK, Van Vuren DH (2010) Effects of urbanization on carnivore species distribution and richness. J Mammal 91:1322–1331

    Google Scholar 

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508

    CAS  PubMed  Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Google Scholar 

  • Putman R (1994) Community ecology. Springer, New York

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.Rproject.org. Accessed 2012–2015.

  • Rauset GR, Mattisson J, Andrén H, Chapron G, Persson J (2012) When species’ ranges meet: assessing differences in habitat selection between sympatric large carnivores. Oecologia 172:701–711

    PubMed  Google Scholar 

  • Reed SE, Merenlender AM (2008) Quiet, nonconsumptive recreation reduces protected area effectiveness. Conserv Lett 1:146–154

    Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Int J Sci 5:23–27

    Google Scholar 

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484

    PubMed  Google Scholar 

  • Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998

    PubMed  Google Scholar 

  • Rota CT, Fletcher RJ Jr, Dorazio RM, Betts MG (2009) Occupancy estimation and the closure assumption. J Appl Ecol 46:1173–1181

    Google Scholar 

  • Royle JA (2006) Site occupancy models with heterogeneous detection probabilities. Biometrics 62:97–102

    PubMed  Google Scholar 

  • Šálek M, Drahníková L, Tkadlec E (2014) Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mammal Rev 45:1–14

    Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Google Scholar 

  • Seip DR (1992) Factors limiting woodland caribou populations and their interrelationships with wolves and moose in southeastern British Columbia. Can J Zool 70:1494–1503

    Google Scholar 

  • Sergio F, Schmitz OJ, Krebs CJ, Holt RD, Heithaus MR, Wirsing AJ, Ripple WJ, Ritchie E, Ainley D, Oro D, Jhala Y, Hiraldo F, Korpimaki E (2014) Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos 123:1234–1243

    Google Scholar 

  • Smith RL, Smith TM (2001) Ecology and field biology: hands-on field package. Benjamin-Cummings Publishing Company, San Francisco

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Google Scholar 

  • Soulé ME, Estes JA, Berger J, Del Rio CM (2003) Ecological effectiveness: conservation goals for interactive species. Conserv Biol 17:1238–1250

    Google Scholar 

  • Stewart FEC, Fisher JT, Burton AC, Volpe JP (2018) Species occurrence data reflect the magnitude of animal movements better than the proximity of animal space use. Ecosphere 9:e02112

    Google Scholar 

  • Thompson W (2004) Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Island Press, Washington, DC

    Google Scholar 

  • Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Google Scholar 

  • Toews M, Juanes F, Burton AC (2017) Mammal responses to human footprint vary with spatial extent but not with spatial grain. Ecosphere 8:e01735

    Google Scholar 

  • Toews M, Juanes F, Burton AC (2018) Mammal responses to the human footprint vary across species and stressors. J Environ Manag 217:690–699

    Google Scholar 

  • Turchin P (2001) Does population ecology have general laws? Oikos 94:17–26

    Google Scholar 

  • Virgós E (2002) Are habitat generalists affected by forest fragmentation? A test with Eurasian badgers (Meles meles) in coarse-grained fragmented landscapes of central Spain. J Zool 258:313–318

    Google Scholar 

  • Watts K, Handley P (2010) Developing a functional connectivity indicator to detect change in fragmented landscapes. Ecol Ind 10:552–557

    Google Scholar 

  • Wiens JA, Moss MR (2005) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wirsing AJ, Heithaus MR, Dill LM (2007) Fear factor: do Dugongs (Dugong dugon) trade food for safety from Tiger Sharks (Galeocerdo cuvier)? Oecologia 153:1031–1040

    PubMed  Google Scholar 

  • Zuur AF, Hilbe J, Ieno EN (2013) A beginner’s guide to GLM and GLMM with R: a frequentist and Bayesian perspective for ecologists. Highland Statistics, Newburgh

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgements

Thanks to Kent Richardson (AITF) and Scott Jevons (Alberta Parks) for GIS expertise and support. This project was achieved through many contributions by those behind the scenes and on the ground, including: Melanie Percy, Jon Jorgenson, Sandra Code, Jay Honeyman, Tom Partello, Alex MacIvor, Stephen Holly, Anne Hubbs, Carrie Nugent, Joyce Gould, Matthew Wheatley, Michelle Hiltz, Brenda Dziwenka, Susan Allen, Luke Nolan, Daivuan Pan, and Connie Jackson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Heim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heim, N., Fisher, J.T., Volpe, J. et al. Carnivore community response to anthropogenic landscape change: species-specificity foils generalizations. Landscape Ecol 34, 2493–2507 (2019). https://doi.org/10.1007/s10980-019-00882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00882-z

Keywords

Navigation