Advertisement

Landscape Ecology

, Volume 34, Issue 8, pp 2017–2031 | Cite as

A combined grazing and fire management may reverse woody shrub encroachment in desert grasslands

  • Guan WangEmail author
  • Junran Li
  • Sujith Ravi
Research Article

Abstract

Context

Fire and controlled grazing have been widely adopted as management interventions to counteract woody shrub proliferation in many arid and semiarid grassland systems. The actual intensity of grazing and fire, along with the timing of the interventions, however, are difficult to determine in practice.

Objectives

This study aims to establish model simulations to access the long-term landscape changes under different land management scenarios.

Methods

We developed a cellular automata model to evaluate landscape dynamics in response to scenarios of grazing, fire, time of intervention, and initial coverage of grasses and shrubs.

Results

With current grazing intensity and fire suppression, the landscape may shift to a shrub-dominated landscape in 100–150 years. An appropriate combination of grazing and fire management could help maintain over 50% of grass cover and reduce the shrub cover to less than 2%, keeping the landscape highly reversible. Even using 1% grazing intensity and periodic fire once a year, the management tools should be implemented in 60 years, otherwise, they may lose effectiveness and the vegetation transition to grasslands would become impossible.

Conclusions

This study highlighted that the reintroduction of fire not only directly removes shrubs but also reallocates soil water and resources among different microsites, which may accelerate grass recovery and suppress shrub regrowth, potentially reversing the shrub invasion process. The combined grazing and fire management plans should be carried out before a threshold time depending on the chosen management tools.

Keywords

Shrub encroachment Cellular automata model Reversibility Arid and semiarid Landscape dynamics 

Notes

Acknowledgements

This research was supported by the U.S. National Science Foundation Award EAR-1451489 for J. Li, EAR-1451518 for S. Ravi, and the Sevilleta LTER Summer Research Fellowship for G. Wang.

Supplementary material

10980_2019_873_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)
10980_2019_873_MOESM2_ESM.pdf (104 kb)
Supplementary material 2 (PDF 104 kb)
10980_2019_873_MOESM3_ESM.pdf (93 kb)
Supplementary material 3 (PDF 94 kb)

References

  1. Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Briske D (ed) Rangeland systems. Springer, Cham, pp 25–84CrossRefGoogle Scholar
  2. Ash AJ, Corfield JP, McIvor JG, Ksiksi TS (2011) Grazing management in tropical savannas: utilization and rest strategies to manipulate rangeland condition. Rangel Ecol Manag 64(3):223–239CrossRefGoogle Scholar
  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29(1):261–299CrossRefGoogle Scholar
  4. Athanassopoulos S, Kaklamanis C, Kalfoutzos G, Papaioannou E (2012) Cellular automata: simulations using matlab. In: Proceedings of the sixth international conference on digital society (ICDS), pp 63–68Google Scholar
  5. Augustine DJ, Brewer P, Blumenthal DM, Derner JD, von Fischer JC (2014) Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland. J Arid Environ 104:59–66CrossRefGoogle Scholar
  6. Barger NN, Archer SR, Campbell JL, Huang CY, Morton JA, Knapp AK (2011) Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. J Geophys Res.  https://doi.org/10.1029/2010JG001506 CrossRefGoogle Scholar
  7. Barlovic R, Santen L, Schadschneider A, Schreckenberg M (1998) Metastable states in cellular automata for traffic flow. Eur Phys J B 5(3):793–800CrossRefGoogle Scholar
  8. Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT Press, CambridgeGoogle Scholar
  9. Belayneh A, Tessema ZK (2017) Mechanisms of bush encroachment and its inter-connection with rangeland degradation in semi-arid African ecosystems: a review. J Arid Land 9(2):299–312CrossRefGoogle Scholar
  10. Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1(4):181–189CrossRefGoogle Scholar
  11. Belnap J, Reynolds RL, Reheis MC, Phillips SL, Urban FE, Goldstein HL (2009) Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA. Aeolian Res 1(1–2):27–43CrossRefGoogle Scholar
  12. Bestelmeyer BT, Okin GS, Duniway MC, Archer SR, Sayre NF, Williamson JC, Herrick JE (2015) Desertification, land use, and the transformation of global drylands. Front Ecol Environ 13(1):28–36CrossRefGoogle Scholar
  13. Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35(3):293–312CrossRefGoogle Scholar
  14. Briggs JM, Schaafsma H, Trenkov D (2007) Woody vegetation expansion in a desert grassland: prehistoric human impact? J Arid Environ 69(3):458–472CrossRefGoogle Scholar
  15. Brooks ML, Pyke DA (2002) Invasive plants and fire in the deserts of North America. In: Galley KEM, Wilson TP (eds) Proceedings of the Invasive Species Workshop: the role of fire in the control and spread of invasive species, Tall Timbers Research Station, Tallahassee, FL, pp 1–14Google Scholar
  16. Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA (2008) Woody plants in grasslands: post-encroachment stand dynamics. Ecol Appl 18(4):928–944CrossRefPubMedGoogle Scholar
  17. Buffington LC, Herbel CH (1965) Vegetational changes on a semidesert grassland range from 1858 to 1963. Ecol Monogr 35(2):139–164CrossRefGoogle Scholar
  18. Caracciolo D, Istanbulluoglu E, Noto LV, Collins SL (2016) Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model. Adv Water Resour 91:46–62CrossRefGoogle Scholar
  19. Chiti T, Mihindou V, Jeffery KJ, Malhi Y, De Oliveira FL, White LJ, Valentini R (2017) Impact of woody encroachment on soil organic carbon storage in the Lopé National Park, Gabon. Biotropica 49(1):9–12CrossRefGoogle Scholar
  20. Distel RA (2016) Grazing ecology and the conservation of the Caldenal rangelands, Argentina. J Arid Environ 134:49–55CrossRefGoogle Scholar
  21. D’Odorico P, He Y, Collins S, De Wekker SF, Engel V, Fuentes JD (2013) Vegetation–microclimate feedbacks in woodland–grassland ecotones. Glob Ecol Biogeogr 22(4):364–379CrossRefGoogle Scholar
  22. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5):520–530CrossRefGoogle Scholar
  23. Dukes D, Gonzales HB, Ravi S, Grandstaff DE, Van Pelt RS, Li J, Wang G, Sankey JB (2018) Quantifying postfire aeolian sediment transport using rare earth element tracers. J Geophys Res 123(1):288–299CrossRefGoogle Scholar
  24. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14(7):709–722CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eldridge DJ, Soliveres S, Bowker MA, Val J (2013) Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. J Appl Ecol 50(4):1028–1038CrossRefGoogle Scholar
  26. Fredrickson EL, Estell RE, Laliberte A, Anderson DM (2006) Mesquite recruitment in the Chihuahuan Desert: historic and prehistoric patterns with long-term impacts. J Arid Environ 65(2):285–295CrossRefGoogle Scholar
  27. Gibbens RP, McNeely RP, Havstad KM, Beck RF, Nolen B (2005) Vegetation changes in the Jornada Basin from 1858 to 1998. J Arid Environ 61(4):651–668CrossRefGoogle Scholar
  28. Harris AT, Asner GP (2003) Grazing gradient detection with airborne imaging spectroscopy on a semi-arid rangeland. J Arid Environ 55(3):391–404CrossRefGoogle Scholar
  29. Hayes GF, Holl KD (2003) Cattle grazing impacts on annual forbs and vegetation composition of mesic grasslands in California. Conserv Biol 17(6):1694–1702CrossRefGoogle Scholar
  30. Herrick JE, Bestelmeyer BT, Archer S, Tugel AJ, Brown JR (2006) An integrated framework for science-based arid land management. J Arid Environ 65(2):319–335CrossRefGoogle Scholar
  31. Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86(2):308–319CrossRefGoogle Scholar
  32. Li X, Yeh AGO (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–343CrossRefGoogle Scholar
  33. Li J, Okin GS, Alvarez L, Epstein H (2008) Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88(1):73–88CrossRefGoogle Scholar
  34. Maestre FT, Bowker MA, Puche MD, Belén Hinojosa M, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A (2009) Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol Lett 12(9):930–941CrossRefPubMedGoogle Scholar
  35. Munson SM, Belnap J, Okin GS (2011) Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc Natl Acad Sci USA 108(10):3854–3859CrossRefPubMedGoogle Scholar
  36. Munson SM, Muldavin EH, Belnap J, Peters DPC, Anderson JP, Reiser MH, Gallo K, Melgoza-Castillo A, Herrick JE, Christiansen TA (2013) Regional signatures of plant response to drought and elevated temperature across a desert ecosystem. Ecology 94(9):2030–2041CrossRefPubMedGoogle Scholar
  37. Munson SM, Belnap J, Webb RH, Hubbdrd JA, Reiser MH, Gallo K (2014) Climate change and plant community composition in national parks of the Southwestern US: forecasting regional, long-term effects to meet management needs. George Wright Forum 31(2):137–148Google Scholar
  38. Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DC, Fredrickson EL (2009) Do changes in connectivity explain desertification? Bioscience 59(3):237–244CrossRefGoogle Scholar
  39. Pei S, Fu H, Wan C (2008) Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric Ecosyst Environ 124(1–2):33–39CrossRefGoogle Scholar
  40. Puttock A, Macleod CJ, Bol R, Sessford P, Dungait J, Brazier RE (2013) Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi-arid grass to woody vegetation transitions. Earth Surf Proc Land 38(13):1602–1611Google Scholar
  41. Ratajczak Z, D’Odorico P, Nippert JB, Collins SL, Brunsell NA, Ravi S (2017) Changes in spatial variance during a grassland to shrubland state transition. J Ecol 105(3):750–760CrossRefGoogle Scholar
  42. Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93(4):697–703CrossRefPubMedGoogle Scholar
  43. Ravi S, D’Odorico P (2009) Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landscape Ecol 24(3):325–335CrossRefGoogle Scholar
  44. Ravi S, D’Odorico P, Wang L, White CS, Okin GS, Macko SA, Collins SL (2009) Post-fire resource redistribution in desert grasslands: a possible negative feedback on land degradation. Ecosystems 12(3):434–444CrossRefGoogle Scholar
  45. Ravi S, Gonzales HB, Buynevich IV, Li J, Sankey JB, Dukes D, Wang G (2018) On the development of a magnetic susceptibility-based tracer for aeolian sediment transport research. Earth Surf Process Landf 44(2):672–678CrossRefGoogle Scholar
  46. Roques KG, O’connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38(2):268–280CrossRefGoogle Scholar
  47. Sankey JB, Ravi S, Wallace CS, Webb RH, Huxman TE (2012) Quantifying soil surface change in degraded drylands: Shrub encroachment and effects of fire and vegetation removal in a desert grassland. J Geophys Res.  https://doi.org/10.1029/2012JG002002 CrossRefGoogle Scholar
  48. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247(4946):1043–1048CrossRefGoogle Scholar
  49. Scholes RJ, Walker BH (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105(3–4):71–100CrossRefGoogle Scholar
  51. Snyder KA, Tartowski SL (2006) Multi-scale temporal variation in water availability: implications for vegetation dynamics in arid and semi-arid ecosystems. J Arid Environ 65(2):219–234CrossRefGoogle Scholar
  52. Sperry JS, Hacke UG (2002) Desert shrub water relations with respect to soil characteristics and plant functional type. Funct Ecol 16(3):367–378CrossRefGoogle Scholar
  53. Stevens N, Lehmann CE, Murphy BP, Durigan G (2017) Savanna woody encroachment is widespread across three continents. Glob Chang Biol 23(1):235–244CrossRefPubMedGoogle Scholar
  54. Turnbull L, Wilcox BP, Belnap J, Ravi S, D’odorico P, Childers D, Gwenzi W, Okin G, Wainwright J, Caylor KK, Sankey T (2012) Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology 5(2):174–183CrossRefGoogle Scholar
  55. Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215CrossRefGoogle Scholar
  56. Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. J Environ Manag 90(10):2931–2942CrossRefGoogle Scholar
  57. van Wijk MT, Rodriguez-Iturbe I (2002) Tree-grass competition in space and time: insights from a simple cellular automata model based on ecohydrological dynamics. Water Resour Res 38(9):18-1CrossRefGoogle Scholar
  58. Wang G, Li J, Ravi S, Dukes D, Gonzales HB, Sankey JB (2018) Post-fire redistribution of soil carbon and nitrogen at a grassland–shrubland ecotone. Ecosystems 22(1):174–188CrossRefGoogle Scholar
  59. White CS (2011) Homogenization of the soil surface following fire in semiarid grasslands. Rangel Ecol Manag 64(4):414–418CrossRefGoogle Scholar
  60. White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environ Plan B 24(3):323–343CrossRefGoogle Scholar
  61. White CS, Pendleton RL, Pendleton BK (2006) Response of two semiarid grasslands to a second fire application. Rangel Ecol Manag 59(1):98–106CrossRefGoogle Scholar
  62. Zhou Y, Boutton TW, Wu XB (2017) Soil carbon response to woody plant encroachment: importance of spatial heterogeneity and deep soil storage. J Ecol 105(6):1738–1749CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of GeosciencesThe University of TulsaTulsaUSA
  2. 2.Department of Earth and Environmental ScienceTemple UniversityPhiladelphiaUSA

Personalised recommendations