Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest

Abstract

Context

The Canadian boreal forest provides valuable ecosystem services that are regionally and globally significant. Despite its importance, the future of the Canadian boreal forest is highly uncertain because potential impacts of future climate change on ecosystem processes and biomass stocks are poorly understood.

Objectives

We investigate how anticipated climatic changes in coming decades could trigger abrupt changes in the biomass of dominant species in Canada’s boreal forests.

Methods

Using the dynamic global vegetation model LPJ-LMfire, which was parameterized for the dominant tree genera in Canada’s boreal forests (Picea, Abies, Pinus, Populus) and driven by a large range of climate scenarios grouped by two forcing scenarios (RCP 4.5/8.5), we simulated forest composition, biomass, and the frequency of disturbance, including wildfire, from Manitoba to Newfoundland.

Results

Results suggest that responses of this region to a warmer future climate will be very important, especially in southern boreal areas and under the RCP 8.5 forcing scenario. In these areas, reductions of total aboveground biomass incurred by fire and heat-induced tree mortality events are projected; the fertilizing effect of increasing atmospheric CO2 on forest productivity is unlikely to compensate for these losses. Decreases in total forest stocks would likely be associated with forest cover loss and a shift in composition in particular from needleleaf evergreen (softwood) to broadleaf deciduous (hardwood) taxa.

Conclusion

The simulated future reduction in softwood biomass suggests that forest management strategies will have to be adapted to maintain a sustainable level of forest harvest and tree density that meets demands for wood products, while maintaining other ecosystem services.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ali AA, Blarquez O, Girardin MP, Hely C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, Gauthier S, Bergeron Y (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc Natl Acad Sci USA 109:20966–20970

    Article  PubMed  Google Scholar 

  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  3. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805

    Article  Google Scholar 

  4. Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1127–1139

    Article  Google Scholar 

  5. Bergeron Y, Vijayakumar DBIP, Ouzennou H, Raulier F, Leduc A, Gauthier S (2017) Projections of future forest age class structure under the influence of fire and harvesting: implications for forest management in the boreal forest of eastern Canada. Int J For Res 90:485–495

    Google Scholar 

  6. Bernier PY, Gauthier S, Jean P-O, Manka F, Boulanger Y, Beaudoin A, Guindon L (2016) Mapping local effects of forest properties on fire risk across Canada. Forests 7:157

    Article  Google Scholar 

  7. Boiffin J, Munson AD (2013) Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere 4:1–20

    Article  Google Scholar 

  8. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706

    Article  Google Scholar 

  9. Bose AK, Harvey BD, Brais S (2014) Sapling recruitment and mortality dynamics following partial harvesting in aspen-dominated mixedwoods in eastern Canada. For Ecol Manage 329:37–48

    Article  Google Scholar 

  10. Boucher Y, Auger I, Noël J, Grondin P, Arseneault D (2017) Fire is a stronger driver of forest composition than logging in the boreal forest of eastern Canada. J Veg Sci 28:57–68

    Article  Google Scholar 

  11. Boulanger Y, Gauthier S, Burton PJ (2014) A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can J For Res 44:365–376

    Article  CAS  Google Scholar 

  12. Boulanger Y, Gauthier S, Gray DR, Le Goff H, Lefort P, Morissette J (2013) Fire regime zonation under current and future climate over eastern Canada. Ecol Appl 23:904–923

    Article  PubMed  Google Scholar 

  13. Boulanger Y, Girardin M, Bernier PY, Gauthier S, Beaudoin A, Guindon L (2017) Changes in mean forest age in Canada’s forests could limit future increases in area burned but compromise potential harvestable conifer volumes. Can J For Res 47:755–764

    Article  Google Scholar 

  14. Brandt JP (2009) The extent of the North American boreal zone. Environ Rev 17:101–161

    Article  Google Scholar 

  15. Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA (2013) An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ Rev 21:207–226

    Article  Google Scholar 

  16. Bureau du forestier en chef (2013) Manuel de détermination des possibilités forestières 2013-2018. Gouvernement du Québec, Roberval, Qc:247

  17. Canadian Council of Forest Ministers (2017) National Forestry Database. Wood supply—Quick facts, Annual harvest versus wood supply, 1990–2015. http://nfdp.ccfm.org/data/compendium/html/comp_31e.html

  18. Chaste E, Girardin MP, Kaplan JO, Portier J, Bergeron Y, Hély C (2018) The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model. Biogeosciences 15:1273–1292

    Article  CAS  Google Scholar 

  19. Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos Chem Phys 2011:22893–22907

    Article  Google Scholar 

  20. Danneyrolles V, Arseneault D, Bergeron Y (2016) Pre-industrial landscape composition patterns and post-industrial changes at the temperate–boreal forest interface in western Quebec, Canada. J Veg Sci 27:470–481

    Article  Google Scholar 

  21. De Bruijn A, Gustafson EJ, Sturtevant BR, Foster JR, Miranda BR, Lichti NI, Jacobs DF (2014) Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol Model 287:44–57

    Article  Google Scholar 

  22. Drobyshev I, Bergeron Y, Girardin MP, Gauthier S, Ols C, Ojal J (2017) Strong gradients in forest sensitivity to climate change revealed by dynamics of forest fire cycles in the post Little Ice Age era. J Geophys Res 122:2605–2616

    Article  Google Scholar 

  23. Druel A, Peylin P, Krinner G, Ciais P, Viovy N, Peregon A, Bastrikov V, Kosykh N, Mironycheva-Tokareva N (2017) Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0). Geosci Model Dev 2017:1–51

    Google Scholar 

  24. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: A brief review. Bull Am Meteor Soc 81:417–425

    Article  Google Scholar 

  25. Ecological Stratification Working Group (1996) A national ecological framework for Canada

  26. Environment Canada (2013) National Climate Data and Information Archive. climate.weatheroffice.gc.ca/. http://climate.weatheroffice.gc.ca/

  27. Epstein HE, Yu Q, Kaplan JO, Lischke H (2007) Simulating future changes in arctic and subarctic vegetation. Comput Sci Eng 9:12–23

    Article  CAS  Google Scholar 

  28. Euskirchen ES, Bennett AP, Breen AL, Genet H, Lindgren MA, Kurkowski TA, McGuire AD, Rupp TS (2016) Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environ Res Lett 11:105003

    Article  CAS  Google Scholar 

  29. Fei S, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM (2017) Divergence of species responses to climate change. Sci Adv 3:e1603055

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman AT, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR (2018) Vegetation demographics in earth system models: a review of progress and priorities. Glob Change Biol 24:35–54

    Article  Google Scholar 

  31. Fisichelli NA, Frelich LE, Reich PB (2014) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37:152–161

    Article  Google Scholar 

  32. Flannigan MD, Wotton BM, Marshall GA, de Groot WJ, Johnston J, Jurko N, Cantin AS (2016) Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim Change 134:59–71

    Article  CAS  Google Scholar 

  33. Forkel M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M (2016) Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351:696–699

    Article  CAS  PubMed  Google Scholar 

  34. Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO 2. Proc Natl Acad Sci 111:3280–3285

    Article  CAS  PubMed  Google Scholar 

  35. Gauthier S, Bernier PY, Boulanger Y, Guo J, Guindon L, Beaudoin A, Boucher D (2015a) Vulnerability of timber supply to projected changes in fire regime in Canada’s managed forests. Can J For Res 45:1439–1447

    Article  Google Scholar 

  36. Gauthier S, Bernier P, Burton PJ, Edwards J, Isaac K, Isabel N, Jayen K, Le Goff H, Nelson EA (2014) Climate change vulnerability and adaptation in the managed Canadian boreal forest. Environ Rev 22:256–285

    Article  Google Scholar 

  37. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015b) Boreal forest health and global change. Science 349:819–822

    Article  CAS  PubMed  Google Scholar 

  38. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO). Bulletin 58:175

    Google Scholar 

  39. Girardin MP, Ali AA, Carcaillet C, Gauthier S, Hély C, Le Goff H, Terrier A, Bergeron Y (2013) Fire in managed forests of eastern Canada: risks and options. For Ecol Manage 294:238–249

    Article  Google Scholar 

  40. Girardin MP, Ali AA, Carcaillet C, Mudelsee M, Drobyshev I, Hély C, Bergeron Y (2009) Heterogeneous response of circumboreal wildfire risk to climate change since the early 1900s. Glob Change Biol 15:2751–2769

    Article  Google Scholar 

  41. Girardin MP, Bernier PY, Raulier F, Tardif JC, Conciatori F, Guo XJ (2011) Testing for a CO2 fertilization effect on growth of Canadian boreal forests. J Geophys Res 116:G01012

    Article  CAS  Google Scholar 

  42. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016a) No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci 113:E8406–E8414

    Article  CAS  PubMed  Google Scholar 

  43. Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F (2014) Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Change Biol 20:851–866

    Article  Google Scholar 

  44. Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G (2016b) Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Change Biol 22:627–643

    Article  Google Scholar 

  45. Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecol Appl 18:391–406

    Article  PubMed  Google Scholar 

  46. Girardin MP, Wotton BM (2009) Summer moisture and wildfire risks across Canada. J Appl Meteorol Climatol 48:517–533

    Article  Google Scholar 

  47. Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res 102:29029–29041

    Article  CAS  Google Scholar 

  48. Hazeleger W, Severijns C, Semmler T, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteor Soc 91:1357–1363

    Article  Google Scholar 

  49. Hély C, Bergeron Y, Flannigan MD (2000) Effects of stand composition on fire hazard in mixed-wood Canadian boreal forest. J Veg Sci 11:813–824

    Article  Google Scholar 

  50. Hély C, Flannigan M, Bergeron Y, McRae D (2001) Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res 31:430–441

    Article  Google Scholar 

  51. Hély C, Fortin CM-J, Anderson KR, Bergeron Y (2010) Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the Prescribed Fire Analysis System. Int J Wildland Fire 19:1099–1109

    Article  Google Scholar 

  52. Hember RA, Kurz WA, Coops NC (2017) Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America. Glob Change Biol 23:1691–1710. https://doi.org/10.1111/gcb.13428

    Article  Google Scholar 

  53. Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR (2014) SoilGrids1 km—Global soil information based on automated mapping. PLoS ONE 9:e105992

    Article  PubMed  PubMed Central  Google Scholar 

  54. Héon J, Arseneault D, Parisien M-A (2014) Resistance of the boreal forest to high burn rates. Proc Natl Acad Sci 111:13888–13893

    Article  CAS  PubMed  Google Scholar 

  55. Hewitt RE, Hollingsworth TN, Chapin FS III, Taylor DL (2016) Fire-severity effects on plant–fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration. BMC Ecol 16:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Higuera PE, Brubaker LB, Anderson PM, Sheng Hu Feng, Brown Thomas A (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  57. Hogg EH, Michaelian M, Hook TI, Undershultz ME (2017) Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Glob Change Biol 23:5297–5308. https://doi.org/10.1111/gcb.13795

    Article  Google Scholar 

  58. Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP (2018) Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol 218(2):630–645

    Article  PubMed  PubMed Central  Google Scholar 

  59. IPCC (2013) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  60. IPCC (2014). Climate Change 2014: Synthesis Report. In: Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p. 151

  61. Ivanov MA, Kotlarski S (2017) Assessing distribution-based climate model bias correction methods over an alpine domain: added value and limitations. Int J Climatol 37:2633–2653

    Article  Google Scholar 

  62. Jiang Y, Zhuang Q, Schaphoff S, Sitch S, Sokolov A, Kicklighter D, Melillo J (2012) Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model. Ecol Evol 2:593–614

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kettridge N, Turetsky MR, Sherwood JH, Thompson DK, Miller CA, Benscoter BW, Flannigan MD, Wotton BM, Waddington JM (2015) Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Sci Rep 5:8063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krause A, Kloster S, Wilkenskjeld S, Paeth H (2014) The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J Geophys Res 119:312–322

    Article  Google Scholar 

  65. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:1–44

    Article  CAS  Google Scholar 

  66. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    Article  CAS  Google Scholar 

  67. Landry J-S, Price DT, Ramankutty N, Parrott L, Matthews HD (2015) Implementation of a Marauding Insect Module (MIM, version 1.0) in the Integrated BIosphere Simulator (IBIS, version 2.6 b4) Dynamic Vegetation-Land Surface Model. Geosci Model Dev 9(3):1243–1261

    Article  Google Scholar 

  68. Lemprière TC, Bernier PY, Carroll AL, Flannigan MD, Gilsenan RP, McKenney DW, Hogg EH, Pedlar JH, Blain D (2008) The importance of forest sector adaptation to climate change. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre. Edmonton, Alta Inf Rep NOR-X-416E

  69. Loranty MM, Berner LT, Goetz SJ, Jin Y, Randerson JT (2013) Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations. Glob Change Biol 20:594–606

    Article  Google Scholar 

  70. Martynov A, Laprise R, Sushama L, Winger K, Šeparović L, Dugas B (2013) Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation. Clim Dyn 41:2973–3005

    Article  Google Scholar 

  71. McKenney DW, Yemshanov D, Pedlar JH, Allen DJ, Lawrence KM, Hope E, Lu B, Eddy B (2016) Canada’s timber supply: current status and future prospects under a changing climate. Information Report GLC-X-15

  72. Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, Whetton P, Hay L, Jones RN, Kittel T, Smith J, Wilby R (2001) Climate scenario development. Pages 739–768 Climate change 2001: the science of climate change. Cambrigde University Press, Cambridge

    Google Scholar 

  73. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213

    Article  CAS  Google Scholar 

  74. Mykleby PM, Snyder PK, Twine TE (2017) Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys Res Lett 44:2016GL071459

    Article  CAS  Google Scholar 

  75. Natural Resources Canada (2010) Geobase - National hydro network. http://ftp.geogratis.gc.ca/pub/nrcan_rncan/vector/geobase_nhn_rhn/

  76. Nock CA, Vogt RJ, Beisner BE (2016) Functional traits, eLS, Wiley, Chichester, pp 1–8

    Google Scholar 

  77. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  CAS  PubMed  Google Scholar 

  78. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373

    Article  PubMed  Google Scholar 

  79. Orville RE, Huffines GR, Burrows WR, Cummins KL (2011) The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon Weather Rev 139:1305–1322

    Article  Google Scholar 

  80. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  81. Perera AH, Ouellette M, Cui W, Drescher M, Boychuk D (2008) BFOLDS 1.0: a spatial simulation model for exploring large scale fire regimes and succession in boreal forest landscapes. Forest Research Report-Ontario Forest Research Institute

  82. Peterson D, Wang J, Ichoku C, Remer LA (2010) Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos Chem Phys 10:6873–6888

    Article  CAS  Google Scholar 

  83. Pfeiffer M, Spessa A, Kaplan JO (2013) A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0). Geosci Model Dev 6:643–685

    Article  CAS  Google Scholar 

  84. Prentice IC, Kelley DI, Foster PN, Friedlingstein P, Harrison SP, Bartlein PJ (2011) Modeling fire and the terrestrial carbon balance. Glob Biogeochem Cycles 25:3005

    Article  CAS  Google Scholar 

  85. Prevost M, Raymond P, Lussier J-M (2010) Regeneration dynamics after patch cutting and scarification in yellow birch–conifer stands. Can J For Res 40:357–369

    Article  Google Scholar 

  86. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin M-P, Lakusta T, Johnston MH, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365

    Article  Google Scholar 

  87. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc Lond B 365:3227–3246

    Article  Google Scholar 

  88. Rogers BM, Solvik K, Hogg EH, Ju J, Masek JG, Michaelian M, Berner LT, Goetz SJ (2018) Detecting early warning signals of tree mortality in boreal North America using multi-scale satellite data. Glob Change Biol 24(6):2284–2304. https://doi.org/10.1111/gcb.14107

    Article  Google Scholar 

  89. Romps DM, Seeley JT, Vollaro D, Molinari J (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346:851–854

    Article  CAS  PubMed  Google Scholar 

  90. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson ULF, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  91. Schneider RR, Devito K, Kettridge N, Bayne E (2016) Moving beyond bioclimatic envelope models: integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the western Canadian boreal plain. Ecohydrology 9:899–908

    Article  Google Scholar 

  92. Scinocca JF, Kharin VV, Jiao Y, Qian MW, Lazare M, Solheim L, Flato GM, Biner S, Desgagne M, Dugas B (2015) Coordinated global and regional climate modeling. J Clim 29:17–35

    Article  Google Scholar 

  93. Separovic L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn 41:3167–3201

    Article  Google Scholar 

  94. Shafer SL, Bartlein PJ, Gray EM, Pelltier RT (2015) Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model. PLoS ONE 10:e0138759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Silva LC, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS ONE 5:e11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  97. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Article  Google Scholar 

  98. Smith WK, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WR, Wieder WR, Liu YY, Running SW (2016) Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Change 6:306–310

    Article  CAS  Google Scholar 

  99. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 107:8149

    Google Scholar 

  100. Tang G, Beckage B, Smith B, Miller PA (2010) Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere 1:1–20

    Article  Google Scholar 

  101. Taylor AR, Boulanger Y, Price DT, Cyr D, McGarrigle E, Rammer W, Kershaw JA (2017) Rapid 21st century climate change projected to shift composition and growth of Canada’s Acadian Forest Region. For Ecol Manage 405:284–294

    Article  Google Scholar 

  102. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A 365:2053–2075

    Article  Google Scholar 

  103. Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y (2013) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35

    Article  PubMed  Google Scholar 

  104. Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991–2011

    Article  CAS  Google Scholar 

  105. Trugman AT, Fenton NJ, Bergeron Y, Xu X, Welp LR, Medvigy D (2016) Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J Adv Model Earth Syst 8:1180–1209

    Article  Google Scholar 

  106. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5

    Article  Google Scholar 

  107. Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, Randerson JT (2017) Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Change 7:529–534

    Article  Google Scholar 

  108. Verheijen LM, Brövkin V, Aerts R, Bonisch G, Cornelissen JH, Kattge J, Reich PB, Wright IJ, Van Bodegom PM (2013) Impacts of trait variation through observed trait-climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences 10:5497–5515

    Article  Google Scholar 

  109. Van Wagner CE, Forest P (1987) Development and Structure of the Canadian Forest FireWeather Index System. Page Can. For. Serv., Forestry Tech. Rep. Citeseer

  110. Wang X, Parisien M-A, Taylor SW, Candau J-N, Stralberg D, Marshall GA, Little JM, Flannigan MD (2017) Projected changes in daily fire spread across Canada over the next century. Environ Res Lett 12:025005

    Article  Google Scholar 

  111. Wang X, Thompson DK, Marshall GA, Tymstra C, Carr R, Flannigan MD (2015) Increasing frequency of extreme fire weather in Canada with climate change. Clim Change 130:573–586

    Article  Google Scholar 

  112. Wotton BM, Flannigan MD, Marshall GA (2017) Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ Res Lett 12:095003

    Article  Google Scholar 

  113. Wullschleger SD, Epstein HE, Box EO, Euskirchen ES, Goswami S, Iversen CM, Kattge J, Norby RJ, van Bodegom PM, Xu X (2014) Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann Bot 114(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycles 19:3020

    Article  CAS  Google Scholar 

  115. Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc Natl Acad Sci 112:4009–4014

    Article  CAS  PubMed  Google Scholar 

  116. Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429

    Article  Google Scholar 

Download references

Acknowledgements

The study was made possible thanks to financial support that was provided by the European NEWFOREST project (PIRSES-GA-2013-612645), the Forest Complexity Modelling (FCM) program, and the NSERC Strategic and Discovery programs. Jed Kaplan was supported by the European Research Council (COEVOLVE 313797). This research was conducted as part of the International Associated Laboratory MONTABOR (LIA France-Canada) and the International Research Group on Cold Forests (CNRS). We thank NSERC (Natural Sciences and Engineering Research Council of Canada) and CFCAS for the funding of the development of the CRCM5. The authors are particularly grateful to Travis Logan of the Ouranos Consortium for help with computation of climatic models, Daniel Stubbs from Calcul Quebec and Compute Canada for help with the Fortran programming and server space facilities for running LPJ-LMfire, and Xiao Jing Guo for help with mapping and computation for this project. We also thank W.F.J. Parsons for English-language editing of the manuscript, and David Price and the two anonymous reviewers for comments on an earlier version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emeline Chaste.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6503 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaste, E., Girardin, M.P., Kaplan, J.O. et al. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landscape Ecol 34, 403–426 (2019). https://doi.org/10.1007/s10980-019-00780-4

Download citation

Keywords

  • Climate change
  • Boreal forest
  • LPJ-LMfire
  • Biomass
  • Heat-induced mortality