Abstract
Context
Habitat loss and fragmentation are major threats to biodiversity and can change community composition, species traits and intraspecific morphology. Calcareous grasslands are hotspots of diversity for plants and invertebrates in Europe, but habitat area and habitat amount declined strongly over the last century.
Objectives
It is controversially discussed how habitat area and habitat amount independently affect species assemblages, traits and morphology.
Methods
With variable transects we recorded orthopteran assemblages on 22 calcareous grasslands along independent gradients of habitat area and habitat amount in a 1 km matrix. We measured male body size and wing length of two abundant grasshopper species.
Results
Orthopteran assemblages showed positive species–area and abundance–area relationships with habitat area and (extenuated) with habitat amount. We found a stronger effect of habitat area reduction on specialists and endangered species, compared to generalists and non-threatened species. The species Chorthippus biguttulus and Gomphocerippus rufus had a larger body size (fitness-related trait) in landscapes with high habitat area and habitat amount. Grasshoppers had longer wings in relation to body size (dispersal-related trait) in landscapes with a low amount of habitat.
Conclusions
Our findings emphasize the value of large patches and landscapes with high habitat amount to (i) enhance species richness and abundances, (ii) protect threatened species, (iii) ensure long term survival of habitat-specialists and (iv) preserve individuals with high fitness traits (large body size). Conservation strategies for Orthoptera should focus on large habitats and areas with a high habitat amount.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Batáry P, Orci KM, Baldi A, Kleijn D, Kisbenedek T, Erdos S (2007) Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic Appl Ecol 8:280–290
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
Bell AJ, Phillips ID, Nielsen SE, Spence JR (2017) Species traits modify the species–area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake. PLoS ONE 12:16
Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491
Bonte D, Lens L, Maelfait JP, Hoffmann M, Kuijken E (2003) Patch quality and connectivity influence spatial dynamics in a dune wolfspider. Oecologia 135:227–233
Brown WD, Wideman J, Andrade MCB, Mason AC, Gwynne DT (1996) Female choice for an indicator of male size in the song of the black-horned tree cricket Oecanthus nigricornis (Orthoptera: Gryllidae: Oecanthinae). Evolution 50:2400–2411
Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809
Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169
Classen A, Steffan-Dewenter I, Kindeketa WJ, Peters MK (2017) Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Funct Ecol 31:768–777
Denning KR, Foster BL (2018) Taxon-specific association of tallgrass prairie flower visitors with site-scale forb communities and landscape composition and configuration. Biol Conserv 227:74–81
Diacon-Bolli J, Dalang T, Holderegger R, Bürgi M (2012) Heterogeneity fosters biodiversity: linking history and ecology of dry calcareous grasslands. Basic Appl Ecol 13:641–653
Diekötter T, Wamser S, Dörner T, Wolters V, Birkhofer K (2016) Organic farming affects the potential of a granivorous carabid beetle to control arable weeds at local and landscape scales. Agric For Entomol 18:167–173
Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663
Fischer J, Steinlechner D, Zehm A, Poniatowski D, Fartmann T, Beckmann A, Stettmer C (2016) Die Heuschrecken Deutschlands und Nordtirols: Bestimmen - Beobachten - Schützen. Quelle und Meyer, Wiebelsheim
Franzén M, Schweiger O, Betzholtz PE (2012) Species–area relationships are controlled by species traits. PLoS ONE 7:10
Fusser MS, Pfister SC, Entling MH, Schirmel J (2017) Effects of field margin type and landscape composition on predatory carabids and slugs in wheat fields. Agric Ecosyst Environ 247:182–188
Gu HN, Hughes J, Dorn S (2006) Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol Entomol 31:68–74
Haddad NM, Gonzalez A, Brudvig LA, Burt MA, Levey DJ, Damschen EI (2017) Experimental evidence does not support the habitat amount hypothesis. Ecography 40:48–55
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzales A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:9
Hambäck PA, Summerville KS, Steffan-Dewenter I, Krauss J, Englund G, Crist TO (2007) Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proc Natl Acad Sci USA 104:8368–8373
Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758
Hanski I, Saastamoinen M, Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75:91–100
Harz K (1975) Die Orthopteren Europas, vol 1. Dr. W. Junk B.V, Den Haag
Harz K (1976) Die Orthopteren Europas, vol 2. Dr. W. Junk B.V, Den Haag
Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Conserv Divers 3:205–212
Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170
Hodgson JG, Montserrat-Martí G, Tallowin J, Thompson K, Díaz S, Cabido M, Grime JP, Wilson PJ, Band SR, Bogard A, Cabido R, Cáceres D, Castro-Díez P, Ferrer C, Maestro-Martínez M, Pérez-Rontomé MC, Charles M, Cornelissen JHC, Dabbert S, Pérez-Harguindeguy N, Krimly T, Sijtsma FJ, Strijker D, Vendramini F, Guerrero-Campo, Hynd A, Jones G, Romo-Díez, de Torres Espuny L, Villar-Salvador P, Zak MR (2005) How much will it cost to save grassland diversity? Biol Conserv 122:263–273
Hughes CL, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc R Soc B Biol Sci 270:S147–S150
Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, Magdeburg
Jamison BE, Robel RJ, Pontius JS, Applegate RD (2002) Invertebrate biomass: associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas. Wildl Soc Bull 30:517–526
Jentzsch A, Köhler G, Schumacher J (2003) Environmental stress and fluctuating asymmetry in the grasshopper Chorthippus parallelus (Acrididae: Gomphocerinae). Zoology 106:117–125
Johnston T, Pietrewicz A (2014) Issues in the ecological study of learning. Psychology Press, New York
Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12:185–197
Kaňuch P, Jarčuška B, Schlosserová D, Sliacka A, Paule L, Krištín A (2012) Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera. Evol Ecol 26:1331–1343
Keller D, van Strien MJ, Herrmann M, Bolliger J, Edwards PJ, Ghazoul J, Holderegger R (2013) Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? Agric Ecosyst Environ 175:39–46
Kelly CD, Tawes BR, Worthington AM (2014) Evaluating indices of body condition in two cricket species. Ecol Evol 4:4476–4487
Krauss J, Alfert T, Steffan-Dewenter I (2009) Habitat area but not habitat age determines wild bee richness in limestone quarries. J Appl Ecol 46:194–202
Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900
Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192
Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515
Newbold T, Scharlemann JPW, Butchart SHM, Şekercioğlu CH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B Biol Sci 280:8
Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett J, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50
Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-1. https://CRAN.R-project.org/package=vegan
Perović D, Gámez-Virués S, Börschig C, Klein AM, Krauss J, Steckel J, Rothenwöhrer C, Erasmi S, Tscharntke T, Westphal C (2015) Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J Appl Ecol 52:505–513
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:987
Polilov AA, Makarova AA (2017) The scaling and allometry of organ size associated with miniaturization in insects: a case study for Coleoptera and Hymenoptera. Sci Rep 7:7
Preziosi RF, Fairbairn DJ, Roff DA, Brennan JM (1996) Body size and fecundity in the waterstrider Aquarius remigis: a test of Darwin’s fecundity advantage hypothesis. Oecologia 108:424–431
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86
Roff DA (1986) The genetic basis of wing dimorphism in the sand cricket, Gryllus firmus and its relevance to the evolution of wing dimorphism in insects. Heredity 57:221–231
Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, Cambridge
Schlumprecht H, Waeber G (2003) Heuschrecken in Bayern. Ulmer Verlag, Stuttgart
Schneider G, Krauss J, Boetzl FA, Fritze MA, Steffan-Dewenter I (2016) Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182:1141–1150
Schnell JK, Harris GM, Pimm SL, Russell GJ (2013) Estimating extinction risk with metapopulation models of large-scale fragmentation. Conserv Biol 27:520–530
Seibold S, Bässler C, Brandl R, Fahrig L, Förster B, Heurich M, Hothorn T, Scheipl F, Thorn S, Müller J (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98:1613–1622
Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432
Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structre. Oikos 73:43–48
Travassos-De-Britto B, da Rocha PLB (2013) Habitat amount, habitat heterogeneity, and their effects on arthropod species diversity. Ecoscience 20:207–214
Voith J, Beckmann A, Sachteleben J, Schlumprecht H, Waeber G (2016) Rote Liste und Gesamtartenliste der Heuschrecken (Saltatoria) Bayerns. Bayerisches Landesamt für Umwelt (LfU)
WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273
Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69
Warzecha D, Diekötter T, Wolters V, Jauker F (2016) Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol 31:1449–1455
Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178
Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petandidou T, Potts SG, Roberts SPM, Szentgyörgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671
Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373
Acknowledgements
We thank Gudrun Schneider for selecting the study sites, the editor, two anonymous reviewers, Jie Zhang, Fabian A. Boetzl and Natalie Foley for constructive comments on the manuscript, Fabian A. Boetzl for statistical advice, Julian Krause for assistance, and the Nature Conservation authorities for permissions.
Author information
Authors and Affiliations
Contributions
JK and SK designed the study, SK analysed the data, SK conducted the field work and wrote the first draft of the manuscript, SK determined Orthoptera, both authors interpreted the results and revised the manuscript.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
König, S., Krauss, J. Get larger or grow longer wings? Impacts of habitat area and habitat amount on orthopteran assemblages and populations in semi-natural grasslands. Landscape Ecol 34, 175–186 (2019). https://doi.org/10.1007/s10980-018-0762-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10980-018-0762-5


