Skip to main content

Advertisement

Log in

Forest cover and matrix functionality drive the abundance and reproductive success of an endangered primate in two fragmented rainforests

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Understanding population responses to landscape structure is critical to improve landscape planning. Yet, large uncertainty remains about how such responses vary among regions with different disturbance intensity. This knowledge is particularly important for forest-specialist species, such as spider monkeys.

Objectives

Assessing the effect of landscape composition and configuration on the abundance and reproductive success of spider monkeys (Ateles geoffroyi) in two fragmented rainforests with different land-use intensity.

Methods

We calculated the encounter rate (relative abundance) and immature-to-female ratio (reproductive success) of spider monkeys in two Mexican rainforest regions (12 forest patches per region, ~ 1140 h of field observations), and assessed their responses to three landscape predictors (forest cover, matrix functionality, and forest patch density) considering the scale of effect in each region.

Results

Spider monkeys showed different responses to landscape structure in each region. Encounter rate increased strongly with matrix functionality in the more disturbed region, and tended to be negatively impacted by patch density in the best-preserved region, but this latter association was weak. Forest cover was positively related to immature-to-female ratio in both regions, but such association was stronger in the best-preserved region.

Conclusions

Our findings suggest that forest loss has stronger negative effects on spider monkeys than forest fragmentation, especially in best-preserved rainforests. Matrix composition is relatively more important in more disturbed regions, where monkeys may be pushed to use the matrix more frequently for feeding and/or traveling. Preventing forest loss and improving matrix quality should be a priority for the conservation of this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altmann J, Hausfater G, Altmann S (1985) Demography of Amboseli baboons, 1963–1983. Am J Primatol 8:113–125

    Article  PubMed  Google Scholar 

  • Anderson DR (2007) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Google Scholar 

  • Anderson J, Rowcliffe JM, Cowlishaw G (2007) Does the matrix matter? A forest primate in a complex agricultural landscape. Biol Conserv 135:212–222

    Article  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Andresen E, Arroyo-Rodríguez V, Ramos-Robles M (2018) Primate seed dispersal: old and new challenges. Int J Primatol 39:443–465

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Cuesta-del Moral E, Mandujano S, Chapman CA, Reyna-Hurtado R, Fahrig L (2013a) Assessing habitat fragmentation effects for primates: the importance of evaluating questions at the correct scale. In: Marsh LK, Chapman CA (eds) Primates in fragments. Developments in primatology: progress and prospects. Springer, New York, pp 13–28

    Chapter  Google Scholar 

  • Arroyo-Rodríguez V, Fahrig L (2014) Why is a landscape perspective important in studies of primates? Am J Primatol 76:901–909

    Article  PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Galán-Acedo C, Fahrig L (2017a) Habitat fragmentation. In: Fuentes A (ed) The international encyclopedia of primatology. Wiley, New York, pp 1–10.

    Google Scholar 

  • Arroyo-Rodríguez V, González-Perez IM, Garmendia A, Solà M, Estrada A (2013b) The relative impact of forest patch and landscape attributes on black howler monkey populations in the fragmented Lacandona rainforest, Mexico. Landscape Ecol 28:1717–1727

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Mandujano S, Benítez-Malvido J (2008) Landscape attributes affecting patch occupancy by howler monkeys (Alouatta palliata mexicana) at Los Tuxtlas, Mexico. Am J Primatol 70:69–77

    Article  PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Pérez-Elissetche GK, Ordóñez-Gómez JD, González-Zamora A, Chaves OM, Sánchez-Lopez S, Chapman CA, Morales-Hernández K, Pablo-Rodríguez M, Ramos-Fernández G (2017b) Spider monkeys in human-modified landscapes: the importance of the matrix. Trop Conserv Sci 10:1–13

    Google Scholar 

  • Asensio N, Arroyo-Rodríguez V, Dunn JC, Cristóbal-Azkarate J (2009) Conservation value of landscape supplementation for howler monkeys living in forest patches. Biotropica 41:768–773

    Article  Google Scholar 

  • Asner GP, Knapp DE, Balaji A, Páez-Acosta G (2009) Automated mapping of tropical deforestation and forest degradation: CLASlite. J Appl Remote Sens 3:33543. https://doi.org/10.1117/1.3223675

    Article  Google Scholar 

  • Blanco V, Waltert M (2013) Does the tropical agricultural matrix bear potential for primate conservation? A baseline study from Western Uganda. J Nat Conserv 21:383–393

    Article  Google Scholar 

  • Boesing AL, Nichols E, Metzger JP (2018) Biodiversity extinction thresholds are modulated by matrix type. Ecography 41:1520–1533

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calixto-Pérez E, Alarcon-Guerrero J, Ramos-Fernández G, Calixto-Pérez E, Alarcón-Guerrero J, Ramos-Fernández G, Dias PA, Rangel-Negrín A, Améndola-Pimenta M, Domingo C, Arroyo-Rodríguez V, Pozo-Montuy G, Pinacho-Guendulain B, Urquiza-Haas T (2018) Integrating expert knowledge and ecological niche models to estimate Mexican primates’ distribution. Primates. https://doi.org/10.1007/s10329-018-0673-8

    Article  PubMed  Google Scholar 

  • Carabias J, Hernández G, Meli P (2009) Análisis comparativo de la deforestación de los ejidos de Marqués de Comillas y determinación de corredores biológicos que conecten los fragmentos de selva de los ejidos con la Reserva de la Biosfera Montes Azules. Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Carpenter CR (1935) Behavior of red spider monkeys in Panama. J Mammal 16:171–180

    Article  Google Scholar 

  • Carretero-Pinzón X, Defler TR, McAlpine CA, Rhodes JR (2017) The influence of landscape relative to site and patch variables on primate distributions in the Colombian Llanos. Landscape Ecol 32:883–896

    Article  Google Scholar 

  • Chaves OM, Stoner KE, Arroyo-Rodríguez V (2012) Differences in diet between spider monkey groups living in forest fragments and continuous forest in Lacandona, Mexico. Biotropica 44:105–113

    Article  Google Scholar 

  • Chaves OM, Stoner KE, Arroyo-Rodríguez V, Estrada A (2011) Effectiveness of spider monkeys (Ateles geoffroyi vellerosus) as seed dispersers in continuous and fragmented rainforests in southern Mexico. Int J Primatol 32:177–192

    Article  Google Scholar 

  • Cuarón AD, Morales A, Shedden A, Rodríguez-Luna E, de Grammont PC (2008) Ateles geoffroyi. In: IUCN Red List threat, species 2008

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KA, Nijman V, Heymann EW, Lambert JE, Rovero F (2017) Impending extinction crisis of the world’s primates: why primates matter. Sci Adv 3:e1600946. https://doi.org/10.1126/sciadv.1600946

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada A, Raboy BE, Oliveira LC (2012) Agroecosystems and primate conservation in the tropics: a review. Am J Primatol 74:696–711

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fox J, Weisberg S, Bates D, Fox MJ (2012) Package “car”. http://cran.r-project.org/web/packages/car/car.pdf. Accessed 10 Nov 2017

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography. https://doi.org/10.1111/ecog.03632

    Article  Google Scholar 

  • Garmendia A, Arroyo-Rodríguez V, Estrada A, Naranjo EJ, Stoner KE (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344

    Article  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

    Article  Google Scholar 

  • Gestich CC, Arroyo-Rodríguez V, Ribeiro MC, da Cunha RGT, Setz EZF (2018) Unraveling the scales of effect of landscape structure on primate species richness and density of titi monkeys (Callicebus nigrifrons). Ecol Res (in press)

  • González-Zamora A, Arroyo-Rodríguez V, Chaves ÓM, Sánchez-López S, Stoner KE, Riba-Hernández P (2009) Diet of spider monkeys (Ateles geoffroyi) in Mesoamerica: current knowledge and future directions. Am J Primatol 71:8–20

    Article  PubMed  Google Scholar 

  • González-Zamora A, Arroyo-Rodríguez V, Oyama AK, Sork V, Chapman CA, Stoner KE (2012) Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration. PLoS ONE 7(10):e46852. https://doi.org/10.1371/journal.pone.0046852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Hernández IU, Ellis EA, Gallo CA (2013) Aplicación de teledetección y sistemas de información geográfica para el análisis de deforestación y deterioro de selvas tropicales en la región Uxpanapa, Veracruz. GeoFocus 13:1–24

    Google Scholar 

  • IUCN (2017) International Union for Conservation of Nature, IUCN Red List of threatened species, version 2017 3-4. www.iucnredlist.org. Accessed 15 Mar 2018

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landscape Ecol 27:929–941

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P (2014) Tropical forests in the Anthropocene. Annu Rev Env Resour 39:125–159

    Article  Google Scholar 

  • Marsh LK, Chapman CA (2013) Primates in fragments: complexity and resilience. Springer, New York

    Book  Google Scholar 

  • Marsh LK, Chapman CA, Arroyo-Rodríguez V, Cobden AK, Dunn JC, Gabriel D, Ghai R, Nijman V, Reyna-Hurtado R, Serio-Silva JC, Wasserman MD (2013) Primates in fragments 10 years later: once and future goals. In: Marsh LK, Chapman CA (eds) Primates in fragments. Springer, New York, pp 505–525

    Chapter  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31:1161–1175

    Article  Google Scholar 

  • Melo FP, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468

    Article  Google Scholar 

  • Milton K (1981) Estimates of reproductive parameters for free-ranging Ateles geoffroyi. Primates 22:574–579

    Article  Google Scholar 

  • Mittermeier RA, Rylands AB, Hoyo JD, Anandam M (2013) Handbook of the mammals of the world, vol 3. Lynx Edicions, Barcelona

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, vol 4. Irwin, Chicago

    Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2016) Vegan: community ecology package. In: R Packag, version 1.15-4

  • Ordóñez-Gómez JD, Arroyo-Rodríguez V, Nicasio-Arzeta S, Cristóbal-Azkarate J (2015) Which is the appropriate scale to assess the impact of landscape spatial configuration on the diet and behavior of spider monkeys? Am J Primatol 77:56–65

    Article  PubMed  Google Scholar 

  • Pozo-Montuy G, Serio-Silva JC, Chapman CA, Bonilla-Sánchez YM (2013) Resource use in a landscape matrix by an arboreal primate: evidence of supplementation in black howlers (Alouatta pigra). Int J Primatol 34:714–731

    Article  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing, version 3.0.1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramos-Fernández G, Boyer D, Aureli F, Vick LG (2009) Association networks in spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol 63:999–1013

    Article  Google Scholar 

  • Ramos-Fernandez G, Smith Aguilar SE, Schaffner CM, Vick LG, Aureli F (2013) Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. PLoS ONE 8(5):e62813. https://doi.org/10.1371/journal.pone.0062813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempel RS, Kaukinen D, Carr AP (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Peterborough

    Google Scholar 

  • Setchell J, Curtis DJ (2003) Field and laboratory methods in primatology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Symington MM (1988) Demography, ranging patterns, and activity budgets of black spider monkeys (Ateles paniscus chamek) in the Manu National Park, Peru. Am J Primatol 15:45–67

    Article  PubMed  Google Scholar 

  • Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522

    Article  CAS  PubMed  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2011) The relative influence of habitat loss and fragmentation: do tropical mammals meet the temperate paradigm? Ecol Appl 21:2324–2333

    Article  PubMed  Google Scholar 

  • Toledo A (2003) Ríos, costas, mares. Hacia un análisis integrado de las regiones hidrológicas de México. Semarnat-INE, Mexico City

    Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • van Roosmalen MGM, Klein LL (1988) The spider monkeys, genus Ateles. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, da Fonseca GAB (eds) Ecology and behavior of neotropical primates. World Wildlife Fund, Washington, DC, pp 455–567

    Google Scholar 

  • Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Wallace RB (2008) Factors influencing spider monkey habitat use and ranging patterns. In: Campbell Christina J (ed) Spider monkeys: behavior, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 138–154

    Chapter  Google Scholar 

  • Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob Ecol Biogeogr 20:209–217

    Article  Google Scholar 

  • Whittingham MJ, Swetnam RD, Wilson JD, Chamberlain DE, Freckleton RP (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280

    Article  Google Scholar 

Download references

Acknowledgements

We thank the landowners of Uxpanapa Valley and Marqués de Comillas region for allowing us to collect data on their properties. We thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACyT) (Project 2015-253946). C.G.A. obtained a scholarship from CONACyT, Mexico and a Rufford Small Grant (18689-1). We thank The Gordon and Betty Moore Foundation and The John D. and Catherine T. MacArthur Foundation for the CLASlite software license. We also thank the support (infrastructure, logistics and administration team) provided by the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES-UNAM). Part of the writing was done while V.A.R. was on a sabbatical stay at Carleton University, funded by PASPA-DGAPA-UNAM. H. Ferreira, A. Valencia and A. López provided technical support. G.R.F. received logistic support from the Instituto Politécnico Nacional and travel support from the National Geographic Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Arroyo-Rodríguez.

Ethics declarations

Research involving human and animal rights

This research was approved by the Secretary of Environment and Natural Resources (SEMARNAT) of Mexico (No. SGPA/DGVS/10837/14). No animals were captured or handled, so the research adhered to the American Society of Primatologists Principles for the Ethical Treatment of Non-Human Primates and the legal requirements of Mexico. All study patches are private lands, and we obtained all required permits to work on them from the landowners.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán-Acedo, C., Arroyo-Rodríguez, V., Estrada, A. et al. Forest cover and matrix functionality drive the abundance and reproductive success of an endangered primate in two fragmented rainforests. Landscape Ecol 34, 147–158 (2019). https://doi.org/10.1007/s10980-018-0753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0753-6

Keywords

Navigation