Landscape patterns and diversity of meadow plants and flower-visitors in a mountain landscape

Abstract

Context

Wild flowering plants and their wild insect visitors are of great importance for pollination. Montane meadows are biodiversity hotspots for flowering plants and pollinators, but they are contracting due to tree invasion.

Objectives

This study quantified flowering plants and their flower-visitor species in montane meadows in the western Cascade Range of Oregon. Species diversity in small, isolated meadows was expected to be lower and nested relative to large meadows. Alternatively, landform features may influence richness and spatial turnover.

Methods

Flowering plants and their visitors were sampled in summers of 2011–2017 in twelve montane meadows with varying soil moisture. All flowering plants and all flower-visitors were recorded during five to seven 15 min watches in ten 3 × 3 m plots in each meadow and year.

Results

A total of 178 flowering plant species, 688 flower-visitor species and 137,916 interactions were identified. Richness of flower-visitors was related to meadow patch size, but neither plant nor flower-visitor richness was related to isolation measured as meadow area within 1000 m. Species in small meadows were not nested subsets of those in large meadows. Species replacement accounted for more than 78% of dissimilarity between meadows and was positively related to differences in soil moisture.

Conclusions

Although larger meadows contained more species, landform features have influenced meadow configuration, persistence, and soil moisture, contributing to high plant and insect species diversity. Hence, conservation and restoration of a variety of meadow types may promote landscape diversity of wild plants and pollinators.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9(8):968–980

    Article  Google Scholar 

  2. Aguirre-Gutiérrez J, Biesmeijer JC, Loon EE, Reemer M, WallisDeVries MF, Carvalheiro LG (2015) Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Divers Distrib 21(10):1129–1140

    Article  Google Scholar 

  3. Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’. Ecol Appl 4(2):378–392

    Article  Google Scholar 

  4. Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807

    Article  Google Scholar 

  5. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387

    CAS  Article  Google Scholar 

  6. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19(1):134–143

    Article  Google Scholar 

  7. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3(5):808–812

    Article  Google Scholar 

  8. Beekman M, Ratnieks FLW (2000) Long-range foraging by the honey-bee, Apis mellifera L. Funct Ecol 14(4):490–496

    Article  Google Scholar 

  9. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86(8):1988–1995

    Article  Google Scholar 

  10. Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98(3):528–538

    Article  Google Scholar 

  11. Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339(6127):1611–1615

    CAS  Article  Google Scholar 

  12. CaraDonna PJ, Petry WK, Brennan RM, Cunningham JL, Bronstein JL, Waser NM, Sanders NJ (2017) Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol Lett 20(3):385–394

    Article  Google Scholar 

  13. Carstensen DW, Sabatino M, Trøjelsgaard K, Morellato LPC (2014) Beta diversity of plant–pollinator networks and the spatial turnover of pairwise interactions. PLoS ONE 9(11):e112903

    Article  Google Scholar 

  14. Chacoff NP, Resasco J, Vázquez DP (2017) Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology 99:21–28

    Article  Google Scholar 

  15. Chacoff NP, Vazquez DP, Lomascolo SB, Stevani EL, Dorado J, Padron B (2012) Evaluating sampling completeness in a desert plant–pollinator network. J Anim Ecol 81(1):190–200

    Article  Google Scholar 

  16. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8(2):148–159

    Article  Google Scholar 

  17. Coop JD, Givnish TJ (2007) Spatial and temporal patterns of recent forest encroachment in montane grasslands of the Valles Caldera, New Mexico, USA. J Biogeogr 34(5):914–927

    Article  Google Scholar 

  18. Cristofoli S, Monty A, Mahy G (2010) Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landsc Urban Plan 98(2):92–98

    Article  Google Scholar 

  19. Dailey MM (2007) Meadow classification in Willamette National Forest and conifer encroachment patterns in the Chucksney–Grasshopper meadow complex, western Cascade Range, Oregon. M.S. Thesis. Oregon State University, Corvallis

  20. Ekroos J, Rundlöf M, Smith HG (2013) Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landscape Ecol 28(7):1283–1292

    Article  Google Scholar 

  21. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  22. Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12(8):439–447

    Article  Google Scholar 

  23. Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyörgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072

    Article  Google Scholar 

  24. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5):757–764

    Article  Google Scholar 

  25. Gilarranz LJ, Sabatino M, Aizen MA, Bascompte J (2015) Hot spots of mutualistic networks. J Anim Ecol 84(2):407–413

    Article  Google Scholar 

  26. Gottesfeld AS, Swanson FJ, Johnson Gottesfeld LM (1981) A Pleistocene low-elevation subalpine forest in the western Cascades, Oregon. Northwest Sci 55(3):157–167

    Google Scholar 

  27. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    Article  Google Scholar 

  28. Hadley AS, Betts MG (2012) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87(3):526–544

    Article  Google Scholar 

  29. Halpern CB, Antos JA, Rice JM, Haugo RD, Lang NL (2010) Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions. J Veg Sci 21(4):717–732

    Google Scholar 

  30. Helderop E (2015) Diversity, generalization, and specialization in plant–pollinator networks of montane meadows. Western Cascades, Oregon

    Google Scholar 

  31. Herrera LP, Sabatino MC, Jaimes FR, Saura S (2017) Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodivers Conserv 26(14):3465–3479

    Article  Google Scholar 

  32. Highland SA (2011) The historic and contemporary ecology of western cascade meadows: archeology, vegetation, and macromoth ecology. PhD thesis, Oregon State University, Corvallis

  33. Jakubos B, Romme WH (1993) Invasion of subalpine meadows by lodgepole pine in Yellowstone National Park, Wyoming, USA. Arct Alp Res 25:382–390

    Article  Google Scholar 

  34. Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. Proc Natl Acad Sci 110(2):555–558

    CAS  Article  Google Scholar 

  35. Jones KE (2016) Spatio-temporal patterns of tree establishment in the M1 meadow of the HJ Andrews Experimental Forest. MS thesis, Oregon State University, Corvallis

  36. Jones JA, Grant GE (1996) Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon. Water Resour Res 32(4):959–974

    Article  Google Scholar 

  37. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23(8):879–890

    Google Scholar 

  38. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16(8):951–963

    Article  Google Scholar 

  39. Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl Ecol 10(2):178–186

    Article  Google Scholar 

  40. Millar CI, Westfall RD, Delany DL, King JC, Graumlich LJ (2004) Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arct Antarct Alp Res 36(2):181–200

    Article  Google Scholar 

  41. Miller EA, Halpern CB (1998) Effects of environment and grazing disturbance on tree establishment in meadows of the central Cascade Range, Oregon, USA. J Veg Sci 9(2):265–282

    CAS  Article  Google Scholar 

  42. Moldenke AR (1975) Niche specialization and species diversity across a California transect. Oecologia 21:219–242

    Article  Google Scholar 

  43. Moldenke AR (1979) Pollination ecology within the Sierra Nevada. Phytologia 42:223–282

    Google Scholar 

  44. Montoya JM, Galiana N (2017) 17 integrating species interaction networks and biogeography. Adaptive food webs: stability and transitions of real and model ecosystems, p. 289

  45. Neumann JL, Griffiths GH, Hoodless A, Holloway GJ (2016) The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes. Landscape Ecol 31(2):301–315

    Article  Google Scholar 

  46. Ogilvie JE, Forrest JR (2017) Interactions between bee foraging and floral resource phenology shape bee populations and communities. Curr Opin Insect Sci 21:75–82

    Article  Google Scholar 

  47. Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89(6):1573–1582

    Article  Google Scholar 

  48. Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77(2):406–415

    Article  Google Scholar 

  49. Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the HJ Andrews Experimental Forest, Oregon. Conserv Biol 14(1):64–75

    Article  Google Scholar 

  50. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11(6):564–575

    Article  Google Scholar 

  51. Pfeiffer VW (2012) Influence of spatial and temporal factors on plants, pollinators and plant–pollinator interactions in montane meadows of the western Cascades Range. MS thesis, Oregon State University, Corvallis

  52. Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biol Conserv 144(5):1619–1629

    Article  Google Scholar 

  53. Ponisio LC, Gaiarsa MP, Kremen C (2017) Opportunistic attachment assembles plant–pollinator networks. Ecol Lett 20(10):1261–1272

    Article  Google Scholar 

  54. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  55. Rao S, Strange JP (2012) Bumble bee (Hymenoptera: Apidae) foraging distance and colony density associated with a late-season mass flowering crop. Environ Entomol 41(4):905–915

    Article  Google Scholar 

  56. Rice JM (2009) Forest-meadow dynamics in the central western Oregon Cascades: topographic, biotic, and environmental change effects. PhD thesis, Oregon State University, Corvallis

  57. Rice JM, Halpern CB, Antos JA, Jones JA (2012) Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow. Plant Ecol 213(4):555–568

    Article  Google Scholar 

  58. Sabatino M, Maceira N, Aizen MA (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecol Appl 20(6):1491–1497

    Article  Google Scholar 

  59. Schweiger O, Maelfait JP, Van Wingerden WKRE, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42(6):1129–1139

    Article  Google Scholar 

  60. Senapathi D, Carvalheiro LG, Biesmeijer JC, Dodson CA, Evans RL, McKerchar M, Morton RD, Moss ED, Roberts SP, Kunin WE, Potts SG (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc R Soc B 282(1806):20150294

    Article  Google Scholar 

  61. Senapathi D, Goddard MA, Kunin WE, Baldock KC (2017) Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct Ecol 31(1):26–37

    Article  Google Scholar 

  62. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64

    Article  Google Scholar 

  63. Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystem patterns and processes. Bioscience 38(2):92–98

    Article  Google Scholar 

  64. Takaoka S, Swanson FJ (2008) Change in extent of meadows and shrub fields in the central Western Cascade Range, Oregon. Prof Geogr 60(4):527–540

    Article  Google Scholar 

  65. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  66. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90(1):7–19

    Article  Google Scholar 

  67. Traveset A, Tur C, Trøjelsgaard K, Heleno R, Castro-Urgal R, Olesen JM (2016) Global patterns of mainland and insular pollination networks. Glob Ecol Biogeogr 25(7):880–890

    Article  Google Scholar 

  68. Vale TR (1981) Tree invasion of montane meadows in Oregon. Am Midl Nat 105(1):61–69

    Article  Google Scholar 

  69. Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447(7145):706–709

    CAS  Article  Google Scholar 

  70. Wilson P, Castellanos MC, Hogue JN, Thomson JD, Armbruster WS (2004) A multivariate search for pollination syndromes among penstemons. Oikos 104(2):345–361

    Article  Google Scholar 

  71. Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8):2068–2076

    Article  Google Scholar 

  72. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143(3):669–676

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Grants 1440409 to the HJ Andrews Long-term Ecological Research (LTER) Program and 1559933 to the EcoInformatics Summer Institute. We thank Katherine E. Jones, Stephanie Bianco, and the EcoInformatics Summer Institute field crews from 2011 through 2017. F.J. Swanson provided helpful review comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julia A. Jones.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, J.A., Hutchinson, R., Moldenke, A. et al. Landscape patterns and diversity of meadow plants and flower-visitors in a mountain landscape. Landscape Ecol 34, 997–1014 (2019). https://doi.org/10.1007/s10980-018-0740-y

Download citation

Keywords

  • Functional connectivity
  • Species replacement
  • Spatial turnover
  • Nestedness
  • Soil moisture
  • HJ Andrews Experimental Forest
  • Meadow restoration