Skip to main content
Log in

Landscape-mediated edge effect in temperate deciduous forest: implications for oak regeneration

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Although the edge effect is known to be an important factor influencing the recruitment of trees in temperate forests, little is known of its synergistic relationships with landscape and fragment attributes.

Objectives

We investigated how the edge effect on regeneration of oaks (Quercus spp.) varies with respect to fragment geometry, connectivity and landscape composition.

Methods

We recorded oak sapling density along edge-interior gradients in 29 forest fragments at the periphery of Mexico City and examined the data with Generalized Additive Models.

Results

A nonlinear and landscape-mediated edge effect was supported by data, including the interactions of the edge distance with patch connectivity, shape and size. Saplings were more abundant at a distance of ca. 50 m from the edge of small, large and connected patches, but large patches also exhibited reduced recruitment towards the interior of the patch. Conversely, sapling density in simple-shaped or connected patches was lower at the edge, exhibiting linear and concave-down increase trends towards the interior of patches, respectively.

Conclusions

Boundary conditions could be interacting with interior forest conditions, making regeneration more frequent at 50 m from the edge. Shady and cooler sites in large patches may be inhibiting oak regeneration. The activity of acorn-dispersing animals and oak predators may increase in unconnected patches, thus increasing the likelihood of edge effects. These results provide insights into the restoration of temperate forest patches in heterogeneous fragmented landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asbjornsen H, Ashton MS, Vogt DJ, Palacios S (2004) Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric Ecosyst Environ 103(3):481–495

    Article  Google Scholar 

  • Battaglia LL, Pritchett DW, Minchin PR (2008) Evaluating dispersal limitations in passive bottomland forest restoration. Restor Ecol 16:417–424

    Article  Google Scholar 

  • Benítez-Malvido J, Gallardo-Vásquez JC, Alvarez-Añorve MY, Avila-Cabadilla LD (2014) Influence of matrix type on tree community assemblages along tropical dry forest edges. Am J Bot 101(5):820–829

    Article  PubMed  Google Scholar 

  • Block S, Meave JA (2015) Structure and diversity of oak forests in the El Tepozteco National Park (Morelos, Mexico). Bot Sci 93:429–460

    Article  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9(2):378–400

    Article  Google Scholar 

  • Buckley DS, Sharik TL, Isebrands JG (1998) Regeneration of northern red oak: positive and negative effects of a competitor removal. Ecology 79:65–78

    Article  Google Scholar 

  • Cadenasso ML, Pickett STA (2000) Linking forest edge structure to edge function: meditation of herbivore damage. J Ecol 88:31–44

    Article  Google Scholar 

  • Cadenasso ML, Pickett STA, Weathers KC, Jones CG (2003) A framework for a theory of ecological boundaries. Bioscience 53:750–758

    Article  Google Scholar 

  • Collinge SK, Palmer TM (2002) The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landscape Ecol 17(7):647–656

    Article  Google Scholar 

  • Condeso TE, Meentemeyer RK (2007) Effects of landscape heterogeneity on the emerging forest disease sudden oak death. J Ecol 95(2):364–375

    Article  Google Scholar 

  • Costa A, Madeira M, Santos JL, Plieninger T, Seixas J (2014) Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators. J Environ Manage 133:18–26

    Article  PubMed  Google Scholar 

  • Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF (2014) Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29(9):511–520

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(01):117–142

    Article  PubMed  Google Scholar 

  • Fagan W, Cantrell R, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  PubMed  Google Scholar 

  • Fletcher RJ Jr, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85(10):1017–1030

    Article  Google Scholar 

  • Fonderflick J, Besnard A, Martin JL (2013) Species traits and the response of open-habitat species to forest edge in landscape mosaics. Oikos 122(1):42–51

    Article  Google Scholar 

  • García-Hernández MD, López-Barrera F, Vásquez-Reyes VM (2016) Microhabitat affects acorn removal in three sympatric and endangered Neotropical oak species. Ecol Res 31(3):343–351

    Article  Google Scholar 

  • García-Romero A (2001) Evolution of disturbed oak woodlands: the case of Mexico City’s western forest reserve. Geogr J 167(1):72–82

    Article  Google Scholar 

  • Granados C, Serrano D, García-Romero A (2014) Efecto de borde en la composición y en la estructura de los bosques templados en la Sierra de Monte Alto, Centro de México. Caldasia 36:269–287

    Article  Google Scholar 

  • Guevara S, Laborde J, Sánchez-Ríos G (2004) Rain forest regeneration beneath the canopy of fig trees isolated in pastures of Los Tuxtlas, Mexico. Biotropica 36:99–108

    Google Scholar 

  • Hansson L (1998) Local hot spots and their edge effects: small mammals in oak-hazel woodland. Oikos 81(1):55–62

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782

    Article  Google Scholar 

  • Haynes JK, Cronin TJ (2006) Interpatch movement and edge effects: the role of behavioral responses to the landscape matrix. Oikos 113(1):43–54

    Article  Google Scholar 

  • Herrmann JD, Carlo TA, Brudvig LA, Damschen EI, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2016) Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97(5):1274–1282

    Article  PubMed  Google Scholar 

  • Hofmeister J, Hošek J, Brabec M, Hédl R, Modrý M (2013) Strong influence of long-distance edge effect on herb-layer vegetation in forest fragments in an agricultural landscape. Perspect Plant Ecol Evol Syst 15(6):293–303

    Article  Google Scholar 

  • Jones K, Wrigley N (1995) Generalized additive models, graphical diagnostics, and logistic regression. Geogr Anal 27(1):1–18

    Article  CAS  Google Scholar 

  • Justino CEL, Dos Santos EF, Noll FB (2016) Diversity of Tiphiidae (Insecta: Hymenoptera) in the fragmented Brazilian semi-deciduous Atlantic Forest. J Insect Conserv 20(3):417–431

    Article  Google Scholar 

  • Laurance WF, Yensen E (1991) Predicting the effects of fragmented habitats. Biol Conserv 55:77–92

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM, Harms KE, Riberio JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2(10):1–8

    Article  Google Scholar 

  • Lawesa MJ, Jouberta R, Griffithsa ME, Stephane Boudreaua S, Chapmanb CA (2007) The effect of the spatial scale of recruitment on tree diversity in Afromontane forest fragments. Biol Conserv 139:447–456

    Article  Google Scholar 

  • Lhotka JM, Stringer JW (2013) Forest edge effects on Quercus reproduction within naturally regenerated mixed broadleaf stands. Can J For Res 43(10):911–918

    Article  Google Scholar 

  • López-Barrera F, Manson RH (2006) Ecology of acorn dispersal by small mammals in montane forests of Chiapas, Mexico. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests. Springer, Berlin Heidelberg, pp 165–176

    Chapter  Google Scholar 

  • Lopez-Barrera F, Newton A, Manson R (2005) Edge effects in a tropical montane forest mosaic: experimental tests of post-dispersal acorn removal. Ecol Res 20(1):31–40

    Article  Google Scholar 

  • Maldonado-López Y, Cuevas-Reyes P, Stone GN, Nieves-Aldrey JL, Oyama K (2015) Gall wasp community response to fragmentation of oak tree species: importance of fragment size and isolated trees. Ecosphere 6(3):1–15

    Article  Google Scholar 

  • Mancke RG, Gavin TA (2000) Breeding bird density in woodlots: effects of depth and buildings at the edges. Ecol Appl 10(2):598–611

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst

    Google Scholar 

  • Mitchell MG, Bennett EM, Gonzalez A (2014) Forest fragments modulate the provision of multiple ecosystem services. J Appl Ecol 51:909–918

    Article  Google Scholar 

  • Montenegro AL, Vargas O (2008) Caracterización de bordes de bosque alto andino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia). Int J Trop Biol 56:1543–1556

    Google Scholar 

  • Morán-López T, Fernández M, Alonso CL, Flores-Rentería D, Valladares F, Díaz M (2015) Effects of forest fragmentation on the oak–rodent mutualism. Oikos 124(11):1482–1491

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Nascimento HEM, Andrade A, Camargo J, Laurance WF, Laurance SG, Ribeiro JEL (2006) Effects of the surrounding matrix on tree recruitment in Amazonian forest fragments. Conserv Biol 20:853–860

    Article  PubMed  Google Scholar 

  • Öckinger E, Bergman KO, Franzén M, Kadlec T, Krauss J, Kuussaari M, Bommarco R (2012) The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecol 27(1):121–131

    Article  Google Scholar 

  • Ortego J, Bonal R, Muñoz A, Espelta JM (2015) Living on the edge: the role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. Plant Biol 17(3):676–683

    Article  CAS  PubMed  Google Scholar 

  • Pe’er G, Henle K, Dislich C, Frank K (2011) Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes. PLoS ONE 6(8):e22355. https://doi.org/10.1371/journal.pone.0022355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez López P, López Barrera F, García Oliva F, Cuevas Reyes P, González Rodríguez A (2013) Procesos de regeneración natural en bosques de encinos: factores facilitadores y limitantes. Biológicas 1:18–24

    Google Scholar 

  • Pincheira-Ulbrich J, Rau JR, Peña-Cortés F (2009) Tamaño y forma de fragmentos de bosque y su relacion con la riqueza de especies de árboles y arbustos. Phyton-Int J Exp Bot 78:121–128

    Google Scholar 

  • Porensky LM, Young TP (2016) Development of edge effects around experimental ecosystem hotspots is affected by hotspot density and matrix type. Landscape Ecol 31:1663. https://doi.org/10.1007/s10980-016-0344-3

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing 2016

  • Ramos-Palacios CR, Badano EI, Flores J, Flores-Cano JA, Flores-Flores JL (2014) Distribution patterns of acorns after primary dispersion in a fragmented oak forest and their consequences on predators and dispersers. Eur J For Res 133(3):391–404

    Article  Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Rubio-Licona L, Romero-Rangel S, Rojas-Zenteno EC (2011) Estructura y composición florística de dos comunidades con presencia de Quercus (Fagaceae) en el estado de México. Revis Chapingo 17:77–90

    Google Scholar 

  • Ruffell J, Didham RK (2016) Towards a better mechanistic understanding of edge effects. Landscape Ecol 31:2205–2213

    Article  Google Scholar 

  • Rzedowski GC, Rzedowski J (2005) Flora fanerogámica del Valle de México. Journal of Chemical Information and Modeling (2a–ed–. 1 ed., Vol. 53). Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

  • Santibañez-Andrade G, Granados Peláez C, García-Romero A (2018) Defining functional groups and their vulnerability to edge effect in a peri-urban forest in Mexico City. Environ Conserv 20:1–10. https://doi.org/10.1017/S0376892917000595

    Article  Google Scholar 

  • Sarlöv HI (2001) Approaches to forest edges as dynamic structures and functional concepts. Landsc Res 26:27–43

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Strayer DL, Power ME, Fagan WF, Pickett ST, Belnap J (2003) A classification of ecological boundaries. Bioscience 53(8):723–729

    Article  Google Scholar 

  • Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol Rev 85(1):35–53

    Article  PubMed  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Vakkari P, Blom A, Rusanen M, Raisio J, Toivonen H (2006) Genetic variability of fragmented stands of pedunculate oak (Quercus robur) in Finland. Genetica 127(1–3):231–241

    Article  CAS  PubMed  Google Scholar 

  • Valencia S (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Mex 75:33–53

    Google Scholar 

  • Vergara PM, Hahn I (2009) Linking edge effects and patch size effects: importance of matrix nest predators. Ecol Model 220(9):1189–1196

    Article  Google Scholar 

  • Vergara PM, Smith C, Delpiano CA, Orellana I, Gho D, Vazquez I (2010) Frugivory on Persea lingue in temperate Chilean forests: interactions between fruit availability and habitat fragmentation across multiple spatial scales. Oecologia 164(4):981–991

    Article  PubMed  Google Scholar 

  • Villaseñor NR, Blanchard W, Driscoll DA, Gibbons P, Lindenmayer DB (2015) Strong influence of local habitat structure on mammals reveals mismatch with edge effects models. Landscape Ecol 30(2):229–245

    Article  Google Scholar 

  • Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecol Biogeogr 20(2):209–217

    Article  Google Scholar 

  • White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77:2549–2557

    Article  Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78(2):356–373

    Article  Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zhang Y, Shi Y, Sichilima AM, Zhu M, Lu J (2016) Evidence on the adaptive recruitment of chinese cork Oak (Quercus variabilis BL): influence on repeated germination and constraint germination by food-hoarding animals. Forests 7(2):47

    Article  Google Scholar 

  • Zurita G, Pe’er G, Bellocq MI, Hansbauer MM (2012) Edge effects and their influence on habitat suitability calculations: a continuous approach applied to birds of the Atlantic forest. J Appl Ecol 49(2):503–512

    Article  Google Scholar 

  • Zuur A, Ieno N, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with r statistics for biology and health. Springer Science and Business Media, New York, pp 271–280

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Autonomous University of Mexico, through DGAPA-PAPIIT project number IN301218. PMV acknowledges FONDECYT 1180978 - CONICYT and Proyecto Fondo Fortalecimiento USA1799 – USACH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo García-Romero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Romero, A., Vergara, P.M., Granados-Peláez, C. et al. Landscape-mediated edge effect in temperate deciduous forest: implications for oak regeneration. Landscape Ecol 34, 51–62 (2019). https://doi.org/10.1007/s10980-018-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0733-x

Keywords

Navigation