Skip to main content

Advertisement

Log in

Detecting biodiversity refugia using remotely sensed data

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitats characterized by improved soil moisture availability can function as microrefugia (hereafter referred to as “refugia”) for the persistence of rare plant species in dry environments. Such areas are dominated by Mediterranean woody vegetation (shrubland and woodland). An analysis of these refugia elucidates their spatial distribution at the landscape scale.

Objectives

Explore whether potential refugia, detected using the upper quantile of the normalized difference vegetation index (NDVI), are related, in space and time, with the survivability of rare species in dry environments.

Methods

We used upper NDVI quantile (25%) values to predict potential refugia in nine selected areas in northern parts of Israel from 1992 to 2011. Next, we developed an index based on the ratio of density (number of observations per area) of rare species in non-refugia versus refugia patches, per site (density of rare species index, DRSI). Finally, we examined the temporal stability of the DRSI using ANOVA and Augmented Dickey–Fuller (ADF) tests.

Results

Refugia classifications and DRSI values for all areas were stable over time (1992–2011). The DRSI values were significantly lower than 1; that is, the density of rare species in the predicted refugia areas was higher than in non-refugia areas.

Conclusions

We assumed that patches of dense woody vegetation, determined by the upper 25% quantile of the NDVI, could be used to identify potential biodiversity refugia in dry environments. This assumption was validated by the DRSI results; it confirms that the local conditions in refugia support rare species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Esri, DigitalGlobe, Geoeye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and the GIS user community

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhangm Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Andrew ME, Warrener H (2017) Detecting microrefugia in semi-arid landscapes from remotely sensed vegetation dynamics. Remote Sens Environ 200:114–124

    Article  Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve—selection methods. Glob Change Biol 10(9):1618–1626

    Article  Google Scholar 

  • Barnosky AD (2008) Climatic change, refugia, and biodiversity: where do we go from here? An editorial comment. Clim Change 86(1–2):29–32

    Article  Google Scholar 

  • Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA (2008) Woody plants in grasslands: post-encroachment stand dynamics. Ecol Appl 18(4):928–944

    Article  PubMed  Google Scholar 

  • Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecol 145(2):243–254

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  • Cheung Y-W, Lai KS (1995) Lag order and critical values of the augmented Dickey–Fuller test. J Bus Econ Stat 13(3):277–280

    Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11(9):362–366

    Article  CAS  PubMed  Google Scholar 

  • Esri (2016) Portal for ArcGi: choose basemap. http://server.arcgis.com/en/portal/10.3/use/choose-basemap.htm. Accessed 24 Mar 2018

  • Fleiss J, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 33:613–619

    Article  Google Scholar 

  • Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G (2008) The ecological performance of protected areas. Annu Rev Ecol Evol S 39:93–113

    Article  Google Scholar 

  • Gillies RR, Kustas WP, Humes KS (1997) A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface. Remote Sens 18:3145–3166

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  • Glass GE, Shields T, Cai B, Yates TL, Parmenter R (2007) Persistently highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia. Ecol Appl 17(1):129–139

    Article  PubMed  Google Scholar 

  • Goslee SC (2011) Analyzing remote sensing data in R: the Landsat package. J Stat Softw 43(4):1

    Article  Google Scholar 

  • Gould SF, Hugh S, Porfirio LL, Mackey B (2015) Ecosystem greenspots pass the first test. Landscape Ecol 30:141–151

    Article  Google Scholar 

  • Hampe A, Jump A (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol S 42:313–333

    Article  Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390

    CAS  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez E, Gao X, Ferreira L (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • IPCC (2013) Fifth Assessment report: Working group II report. http://www.ipcc.ch/ipccreports/ar4-wg2.htm. Accessed 24 Mar 2018

  • Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY (2014) Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change 4:598–604

    Article  CAS  Google Scholar 

  • Keppel G, Mokany K, Wardell-Johnson GW, Phillips BL, Welbergen JA, Reside AE (2015) The capacity of refugia for conservation planning under climate change. Front Ecol Environ 13(2):106–112

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404

    Article  Google Scholar 

  • Kiedrzyński M, Zielińska KM, Kiedrzyńska E, Rewicz A (2017) Refugial debate: on small sites according to their function and capacity. Evol Ecol 31:815–827

    Article  Google Scholar 

  • Klausmeyer KR, Shaw RM (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 4(7):e6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledig FT, Mápula-Larreta M, Bermejo-Velázquez B, Reyes-Hernández V, Flores-López C, Capó-Arteaga MA (2000) Locations of endangered spruce populations in México and the demography of Picea chihuahuana. Madrono 47:71–88

    Google Scholar 

  • MacArthur R, Wilson E (1967) The theory of island biography. Princeton University Press, Princeton

    Google Scholar 

  • Mackey B, Berry S, Hugh S, Ferrier S, Harwood TD, Williams KJ (2012) Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecol Appl 22(6):1852–1864

    Article  PubMed  Google Scholar 

  • Makowski D (2018) Efficient and publishing-oriented workflow for psychological science with the R package “Psycho”. https://github.com/neuropsychology/psycho.R. Accessed 24 Mar 2018

  • Margules C, Pressey R, Williams P (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27(4 Suppl 2):309–326

    Article  CAS  PubMed  Google Scholar 

  • McCune JL (2016) Species distribution models predict rare species occurrences despite significant effects of landscape. J Appl Ecol 53:1871–1879

    Article  Google Scholar 

  • McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22(3):276–282

    Article  Google Scholar 

  • Médail F (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg Environ Change 17(6):1775–1790

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853

    Article  CAS  PubMed  Google Scholar 

  • Ormeño E, Mévy JP, Vila B, Bousquet-Mélou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species: relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    Article  CAS  PubMed  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schime D, Field CB (2001) Consistent land-and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320

    Article  CAS  PubMed  Google Scholar 

  • Pacifici K, Reich BJ, Dorazio RM, Conroy MJ (2016) Occupancy estimation for rare species using a spatially-adaptive sampling design. Methods Ecol Evol 7:285–293

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pärtel MK, Kalamees R, Reier Ü, Tuvi E-L, Roosaluste E, Vellak A, Zobel M (2005) Grouping and prioritization of vascular plant species for conservation: combining natural rarity and management need. Biol Conserv 123(3):271–278

    Article  Google Scholar 

  • Perevolotsky A (2005) Integrating landscape ecology in the conservation of Mediterranean ecosystems: the Israeli experience. Isr J Plant Sci 53:203–213

    Article  Google Scholar 

  • Pigott CD, Pigott S (1993) Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J Ecol 81(3):557–566

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo SG III, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5(4):e10095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reside AE, Welbergen JA, Phillips BL, Johnson GW, Keppel G, Ferrier S, Williams SE, VanDerWal J (2014) Characteristics of climate change refugia for Australian biodiversity. Austral Ecol 39:887–897

    Article  Google Scholar 

  • Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Article  Google Scholar 

  • Sapes G, Serra-Diaz JM, Lloret F (2017) Species climatic niche explains drought-induced die-off in a Mediterranean woody community. Ecosphere 8(5):e01833

    Article  Google Scholar 

  • Shmida A, Pollak G (2007) Red data book: endangered plants of Israel, vol 1. Israel Nature and Parks Authority, Jerusalem

  • Shmida A, Pollak G, Fragman-Sapir O (2011) Red data book: endangered plants of Israel. Israel Nature and Parks Authority

  • Shoshany M, Svoray T (2002) Multidate adaptive unmixing and its application to analysis of ecosystem transitions along a climatic gradient. Remote Sens Environ 82:5–20

    Article  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • Svoray T, Karnieli A (2011) Rainfall, topography, and primary production relationships in a semiarid ecosystem. Ecohydrology 4:56–66

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  CAS  PubMed  Google Scholar 

  • Watson DM (2002) A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. J Biogeogr 29:823–834

    Article  Google Scholar 

  • Yenni G, Adler PB, Ernest SK (2017) Do persistent rare species experience stronger negative frequency dependence than common species? Glob Ecol Biogeogr 26(5):513–523

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chen Meged for helping to create the map of the study sites. We thank the Israel Nature and Parks Authority for providing the database of rare species in Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Dubinin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, V., Svoray, T., Dorman, M. et al. Detecting biodiversity refugia using remotely sensed data. Landscape Ecol 33, 1815–1830 (2018). https://doi.org/10.1007/s10980-018-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0705-1

Keywords