Skip to main content

Small-scale agricultural landscapes promote spider and ground beetle densities by offering suitable overwintering sites

Abstract

Context

Intensive agricultural management practices and landscape homogenisation are the main drivers of biodiversity loss in agricultural landscapes. Agricultural fields are regularly disturbed and provide unstable habitats due to crop management regimes. This may lead to movement of arthropods into neighbouring non-arable habitats, as natural and semi-natural habitats provide suitable overwintering sites.

Objectives

Here we assessed the effect of landscape composition and configuration on the overwintering spider and carabid fauna of grassy field margins and hedgerows.

Methods

We sampled ground-dwelling arthropods at field edges of different types (grassy field margin and hedgerows), landscape composition (diverse and simple) and configuration (mosaic and large-scale agricultural landscapes).

Results

We detected larger spiders in hedgerows than in grassy field margins and in complex landscapes rather than in simple landscapes. We found a significant effect of interaction between landscape composition and edge type on ballooning propensity of spiders. Agrobiont carabids were more abundant in field edges of compositionally simple and large-scale agricultural landscapes. Furthermore, we showed an effect of interaction between landscape composition and edge type on agrobiont spiders. We collected larger carabids in grassy field margins than in hedgerows and carabids were smaller in simple landscapes than in diverse landscapes. The spider community was affected by edge type, and landscape composition had a significant effect on the carabid community.

Conclusions

Small-scale agricultural landscapes may have higher overall densities of ground-dwelling spiders and carabids than large scale landscapes due to the relatively high edge density and the higher quantity of available overwintering sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bartón K (2015) Package MuMIn. R Package version 1.15. 1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  2. Batáry P, Gallé R, Riesch F, Fischer C, Dormann CF, Mußhoff O, Császár P, Fusarol S, Gayer C, Happe AK, Kurucz K, Molnár D, Rösch V, Wietzke A, Tscharntke T (2017) The former iron curtain still drives biodiversity-profit trade-offs in German agriculture. Nat Ecol Evol 1:1279–1284

    Article  PubMed  Google Scholar 

  3. Batáry P, Holzschuh A, Orci KM, Samu F, Tscharntke T (2012) Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agr Ecosyst Environ 146:130–136

    Article  Google Scholar 

  4. Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manag 60:7–22

    Article  Google Scholar 

  5. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    Article  PubMed  CAS  Google Scholar 

  6. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Lond B 273:1715–1727

    Article  CAS  Google Scholar 

  7. Bianchi FJJA, van der Werf W (2003) The effect of the area and configuration of hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in agricultural landscapes: a simulation study. Environ Entomol 32:1290–1304

    Article  Google Scholar 

  8. Birkhofer C, Entling M, Lubin Y (2013) Agroecology trait composition, spatial relationships, trophic interactions. In: Penney D (ed) Spider research in the 21st century: trends & perspectives. Siri Scientific Press, New York, pp 200–229

    Google Scholar 

  9. Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–316

    Article  Google Scholar 

  10. Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43

    Article  Google Scholar 

  11. Bonte D, Vandenbroecke N, Lens L, Maelfait JP (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc Lond B 270:1601–1607

    Article  Google Scholar 

  12. Buchar J, Ruzicka V (2002) Catalogue of spiders of the Czech Republic. Peres, Prague

    Google Scholar 

  13. Buddle CM, Higgins S, Rypstra AL (2004) Ground-dwelling spider assemblages inhabiting riparian forests and hedgerows in an agricultural landscape. Am Midl Nat 151:15–26

    Article  Google Scholar 

  14. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin, p 488

    Google Scholar 

  15. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  16. Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecol 23:135–148

    Article  Google Scholar 

  17. Cordeau S, Petit S, Reboud X, Chauvel B (2012) Sown grass strips harbour high weed diversity but decrease weed richness in adjacent crops. Weed Res 52:88–97

    Article  Google Scholar 

  18. Drapela T, Moser D, Zaller JG, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31:254–262

    Article  Google Scholar 

  19. Duflot R, Aviron S, Ernoult A, Fahrig L, Burel F (2015) Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecol Res 30:75–83

    Article  Google Scholar 

  20. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–367

    Google Scholar 

  21. Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485

    Article  Google Scholar 

  22. Entling MH, Stämpfli K, Ovaskainen O (2011) Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos 120:1099–1109

    Article  Google Scholar 

  23. ESRI (2012) ArcGIS 10.1. ESRI (Environmental Systems Resource Institute), Redlands

    Google Scholar 

  24. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  25. Ferrante M, González E, Lövei GL (2017) Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecol Evol 7:7699–7707

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fischer C, Schlinkert H, Ludwig M, Holzschuh A, Gallé R, Tscharntke T, Batáry P (2013) The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. J Insect Conserv 17:1027–1038

    Article  Google Scholar 

  27. Freude H, Harde KW, Müller-Motzfeld G, Lohse GA, Klausnitzer B (2004) Die Käfer Mitteleuropas, Adephaga 1. Carabidae Laufkäfer. Spektrum akademischer Verlag, Munich, pp 1–521

    Google Scholar 

  28. Geiger F, Wäckers FL, Bianchi FJJA (2009) Hibernation of predatory arthropods in semi-natural habitats. Biocontrol 54:529–535

    Article  Google Scholar 

  29. González E, Salvo A, Defagó MT, Valladares G (2016) A moveable feast: insects moving at the forest-crop interface are affected by crop phenology and the amount of forest in the landscape. PLoS ONE 11:e0158836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hendrickx F, Maelfait JP, Desender K, Aviron S, Bailey D, Diekotter T, Lens L, Schweiger O, Speelmans M, Vandomme V, Bugter R (2009) Pervasive effects of dispersal limitation on within-and among-community species richness in agricultural landscapes. Glob Ecol Biogeogr 18:607–616

    Article  Google Scholar 

  31. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  32. Holland JM, Bianchi FJJA, Entling MH, Moonen A-C, Smith BM, Jeanneret P (2016) Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651

    Article  PubMed  CAS  Google Scholar 

  33. Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatiotemporal dynamics of boundary and field overwintering predatory beetles in arable crops. Biocontrol 54:19–33

    Article  Google Scholar 

  34. Homburg K, Homburg N, Schaefer F, Schuldt A, Assmann T (2014) Carabids.org-a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers 7:195–205

    Article  Google Scholar 

  35. Hurka K (1996) Carabidae of the Czech and Slovak Republics. Kabourek, Zlin, pp 1–565

    Google Scholar 

  36. Kalushkov P, Blagoev G, Deltshev C (2008) Biodiversity of epigeic spiders in genetically modified (Bt) and conventional (non-Bt) potato fields in Bulgaria. Acta Zool Bulg 60:61–69

    Google Scholar 

  37. Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’. R package version, 2-0. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  38. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann Rev Entomol 45:175–201

    Article  CAS  Google Scholar 

  39. Lang S, Tiede D (2003) vLATE Extension für ArcGIS—vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse, ESRI Anwenderkonferenz 2003 Innsbruck. CDROM

  40. Le Viol I, Julliard R, Kerbiriou C, de Redon L, Carnino N, Machon N, Porcher E (2008) Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. Biol Conserv 101:1581–1590

    Article  Google Scholar 

  41. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  42. Lóczy D (ed) (2015) Landscapes and landforms of Hungary. Springer, Leverkusen, pp 1–294

    Google Scholar 

  43. Madeira F, Tscharntke T, Elek Z, Kormann UG, Pons X, Rösch V, Samu F, Scherber C, Batáry P (2016) Spillover of arthropods from cropland to protected calcareous grassland–the neighbouring habitat matters. Agric Ecosyst Environ 235:127–133

    Article  Google Scholar 

  44. Makra L, Matyasovszky I, Páldy A, Deák ÁJ (2012) The influence of extreme high and low temperatures and precipitation totals on pollen seasons of Ambrosia, Poaceae and Populus in Szeged, southern Hungary. Grana 51:215–227

    Article  Google Scholar 

  45. Mansion-Vaquié A, Ferrante M, Cook SM, Pell JK, Lövei GL (2017) Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum aestivum). J Appl Entomol 141:600–611

    Article  CAS  Google Scholar 

  46. Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21

    Article  Google Scholar 

  47. Marshall EJP, West TM, Kleijn D (2006) Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric Ecosyst Environ 113:36–44

    Article  Google Scholar 

  48. Martin TJ, Major RE (2001) Changes in wolf spider (Araneae) assemblages across woodland-pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral Ecol 26:264–274

    Article  Google Scholar 

  49. Moretti M, Dias AT, Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Matty PB (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567

    Article  Google Scholar 

  50. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2017) Spiders of Europe. www.araneae.unibe.ch. Accessed 09 Oct 2017

  51. Noordijk J, Raemakers IP, Schaffers AP, Sykora KV (2009) Arthropod richness in roadside verges in the Netherlands. Terr Arthropod Rev 2:63–76

    Article  Google Scholar 

  52. Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agric Ecosyst Environ 95:579–612

    Article  Google Scholar 

  53. Öberg S, Ekbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric Ecosyst Environ 122:211–219

    Article  Google Scholar 

  54. Opatovsky I, Lubin Y (2012) Coping with abrupt decline in habitat quality: effects of harvest on spider abundance and movement. Acta Oecol 41:14–19

    Article  Google Scholar 

  55. Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222

    Article  Google Scholar 

  56. Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH (2010) Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agric Ecosyst Environ 137:68–74

    Article  Google Scholar 

  57. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174

    Article  Google Scholar 

  58. Ramsden MW, Menéndez R, Leather SR, Wäckers F (2015) Optimizing field margins for biocontrol services: the relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agric Ecosys Environ 199:94–104

    Article  Google Scholar 

  59. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  60. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188

    Article  PubMed  Google Scholar 

  61. Roberts DW (2012) Package ‘‘labdsv.’’ http://cran.r-project.org/web/packages/labdsv/labdsv.pdf. Accessed 23 Aug 2017

  62. Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426

    Article  Google Scholar 

  63. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, HuberSanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  64. Samu F, Cs Szinetár (2002) On the nature of agrobiont spiders. J Arachnol 30:389–402

    Article  Google Scholar 

  65. Sarthou JP, Badoz A, Vaissière B, Chevallier A, Rusch A (2014) Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agric Ecosyst Environ 194:17–28

    Article  Google Scholar 

  66. Schaffers AP, Raemakers IP, Sýkora KV (2012) Successful overwintering of arthropods in roadside verges. J Insect Conserv 16:511–522

    Article  Google Scholar 

  67. Schellhorn NA, Bianchi FJJA, Hsu CL (2014) Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu Rev Entomol 59:559–581

    Article  PubMed  CAS  Google Scholar 

  68. Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614

    Article  Google Scholar 

  69. Schirmel J, Thiele J, Entling MH, Buchholz S (2016) Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric Ecosyst Environ 235:318–328

    Article  Google Scholar 

  70. Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  71. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  72. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  73. Szilassi P, Bata T, Szabó S, Czúcz B, Molnár Z (2017) The link between landscape pattern and vegetation naturalness on a regional scale. Ecol Indic 81:252–259

    Article  Google Scholar 

  74. Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41:526–538

    Article  Google Scholar 

  75. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  76. Turner MG, Gardner MH (2015) Landscape ecology in theory and practice pattern and process. Springer, New York, pp 1–482

    Google Scholar 

  77. Wamser S, Dauber J, Birkhofer K, Wolters V (2011) Delayed colonisation of arable fields by spring breeding ground beetles (Coleoptera: Carabidae) in landscapes with a high availability of hibernation sites. Agric Ecosyst Environ 144:235–240

    Article  Google Scholar 

  78. Way JM (1977) Roadside verges and conservation in Britain: a review. Biol Conserv 12:65–74

    Article  Google Scholar 

  79. Werling BP, Gratton C (2008) Influence of field margins and landscape context on ground beetle diversity in Wisconsin (USA) potato fields. Agric Ecosyst Environ 128:104–108

    Article  Google Scholar 

Download references

Funding

This work was supported by the Hungarian National Research, Development and Innovation Office (Grant Id: NKFI-FK-124579).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Róbert Gallé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1182 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gallé, R., Császár, P., Makra, T. et al. Small-scale agricultural landscapes promote spider and ground beetle densities by offering suitable overwintering sites. Landscape Ecol 33, 1435–1446 (2018). https://doi.org/10.1007/s10980-018-0677-1

Download citation

Keywords

  • Grassy field margin
  • Overwintering arthropods
  • Landscape composition
  • Landscape configuration
  • Hedgerow