Skip to main content

Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands

Abstract

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Auffret AG (2011) Can seed dispersal by human activity play a useful role for the conservation of European grasslands? Appl Veg Sci 14:291–303

    Article  Google Scholar 

  2. Auffret AG, Plue J (2014) Scale-dependent diversity effects of seed dispersal by a wild herbivore in fragmented grasslands. Oecologia 175:305–313

    Article  PubMed  Google Scholar 

  3. Auffret AG, Plue J, Cousins SAO (2015) The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44:51–59

    Article  PubMed Central  Google Scholar 

  4. Barton K (2011) MuMIn: Multi-model inference. R package version 1.0

  5. Bede Á, Salisbury RB, Csathó AI, Czukor P, Páll DG, Szilágyi G, Sümegi P (2015) Report of the complex geoarcheological survey at the Ecse-halom kurgan in Hortobágy, Hungary. Cent Eur Geol 58:268–289

    Article  Google Scholar 

  6. Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot Hung 39:97–181

    Google Scholar 

  7. Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J Veg Sci 19:875–884

    Article  Google Scholar 

  8. Bossuyt B, Honnay O, Hermy M (2004) Scale-dependent frequency distributions of plant species in dune slacks: dispersal and niche limitation. J Veg Sci 15:321–328

    Google Scholar 

  9. Brückmann S, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  10. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  11. Cadenasso ML, Pickett ST (2001) Effect of edge structure on the flux of species into forest interiors. Conserv Biol 15:91–97

    Article  Google Scholar 

  12. Cierjacks A, Kowarik I, Joshi J, Hemplel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640

    Article  Google Scholar 

  13. de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402

    Article  Google Scholar 

  14. Deák B, Valkó O, Török P, Kelemen A, Miglécz T, Szabó S, Szabó G, Tóthmérész B (2015) Micro-topographic heterogeneity increases plant diversity in old stages of restored grasslands. Basic Appl Ecol 16:291–299

    Article  Google Scholar 

  15. Deák B, Tóthmérész B, Valkó O, Sudnik-Wójcikowska B, Bragina TM, Moysiyenko II, Bragina TM, Apostolova I, Dembicz I, Bykov NI, Török P (2016a) Cultural monuments and nature conservation: the role of kurgans in maintaining steppe vegetation. Biodivers Conserv 25:2473–2490

    Article  Google Scholar 

  16. Deák B, Valkó O, Török P, Tóthmérész B (2016b) Factors threatening grassland specialist plants—a multi-proxy study on the vegetation of isolated grasslands. Biol Conserv 204:255–262

    Article  Google Scholar 

  17. Deák B, Tölgyesi C, Kelemen A, Bátori Z, Gallé R, Bragina TM, Abil YA, Valkó O (2017) Vegetation of steppic cultural heritage sites in Kazakhstan – effects of micro-habitats and grazing intensity. Plant Ecol Divers 10:509–520

    Article  Google Scholar 

  18. European Environment Agency (2010) CORINE land cover database. European Environment Agency, Copenhagen

    Google Scholar 

  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Sys 34:487–515

    Article  Google Scholar 

  20. Faraway JJ (2014) Linear models with R, 2nd edn. Chapman & Hall, London

    Google Scholar 

  21. Gazol A, Tamme R, Takkis K, Kasari L, Saar L, Helm A, Pärtel M (2012) Landscape and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography 35:944–951

    Article  Google Scholar 

  22. Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. AMBIO 40:248–255

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heinken T, Weber E (2013) Consequences of habitat fragmentation for plant species: do we know enough? Perspect Plant Ecol Evol Sys 15:205–216

    Article  Google Scholar 

  24. Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the dispersal and diaspore database: baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst 15:180–192

    Article  Google Scholar 

  25. Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  26. Jacquemyn H, Roldán-Ruiz I, Honnay O (2010) Evidence for demographic bottlenecks and limited gene flow leading to low genetic diversity in a rare thistle. Conserv Genet 11:1979–1987

    Article  Google Scholar 

  27. Janečková P, Janeček S, Klimešová J, Götzenberger L, Horník J, Lepš J, de Bello F (2017) The plant functional traits that explain species occurrence across fragmented grasslands differ according to patch management, isolation, and wetness. Landscape Ecol 32:791–805

    Article  Google Scholar 

  28. Kiss R, Valkó O, Tóthmérész B, Török P (2016) Seed bank research in Central-European grasslands—an overview. In: Murphy J (ed) Seed banks: types, roles and research. Nova Science Publishers, New York, pp 1–34

    Google Scholar 

  29. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenandel JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  30. Klimešová J, Danihelka J, Chrtek J, de Bello F, Herben T (2017) CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98:1179

    Article  PubMed  Google Scholar 

  31. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  32. Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012) Fragmentation effects on plant trait distribution in European forests and grassland. Ecography 35:356–363

    Article  Google Scholar 

  33. Lindborg R, Plue J, Andersson K, Cousins SAO (2014) Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol Conserv 169:206–213

    Article  Google Scholar 

  34. Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landscape Ecol 32:1895–1906

    Article  Google Scholar 

  35. Lisetskii FN, Sudnik-Wójcikowska B, Moysiyenko II (2016) Flora differentiation among local ecotypes in the transzonal study of forest-steppe and steppe mounds. Biol Bull 43:169–176

    Article  Google Scholar 

  36. MacDougall A, McCann K, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494:86–89

    Article  PubMed  CAS  Google Scholar 

  37. Marini M, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kühn I, Lindborg R, Pärtel M, Bommarco R (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908

    Article  Google Scholar 

  38. McGeoch M, Gaston KJ (2002) Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev 77:311–331

    Article  PubMed  Google Scholar 

  39. Molnár Z, Biró M, Bölöni J, Horváth F (2008a) Distribution of the (semi-) natural habitats in Hungary I.—Marshes and grasslands. Acta Bot Hung 50:59–105

    Article  Google Scholar 

  40. Molnár C, Molnár Z, Barina Z, Bauer N, Biró M, Csiky J, Fekete G, Horváth A, Király BG, Purger D, Schmidt D, Sramkó G, Bodonczi L, Csathó AI, Deák ÁJ, Harmos K, Isépy I (2008b) Vegetation-based landscape regions of Hungary. Acta Bot Hung 50:47–58

    Article  Google Scholar 

  41. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413

    Article  PubMed  CAS  Google Scholar 

  42. Novák J, Konvička M (2006) Proximity of valuable habitats affects succession patterns in abandoned quarries. Ecol Eng 26:113–122

    Article  Google Scholar 

  43. Ozinga WA, Bekker RM, Schaminee JHJ, van Groenendael JM (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777

    Article  Google Scholar 

  44. Poschlod P, Kiefer S, Trankle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–90

    Article  Google Scholar 

  45. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  46. Riba R, Mayol M, Giles BE, Ronce O, Imbert E, van der Velde M, Chauvet S, Ericson L, Bijlsma R, Vosman B, Smulders MJ, Olivieri I (2009) Darwin’s wind hypothesis: does it work for plant dispersal in fragmented habitats? New Phytol 183:667–677

    Article  PubMed  Google Scholar 

  47. Sudnik-Wójcikowska B, Moysiyenko II (2014) Indicative role of the flora of kurgans in the ‘Wild Field’ (southern Ukraine). Monit Środowiska Przyrodniczego 15:75–83

    Google Scholar 

  48. Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M (2010) Environmental heterogeneity, species diversity and co-existence at different spatial scales. J Veg Sci 21:796–801

    Google Scholar 

  49. Thompson K, Bakker J, Bekker R (1997) Soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  50. Valkó O, Tóthmérész B, Kelemen A, Simon E, Miglécz T, Lukács B, Török P (2014) Environmental factors driving vegetation and seed bank diversity in alkali grasslands. Agric Ecosys Environ 182:80–87

    Article  Google Scholar 

  51. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors were supported by OTKA PD 115627 (BD), OTKA PD 111807 (OV), NKFI FK 124404 (OV), NKFI KH 126476 (OV), NKFI ERC-16-M-127070 (OV); NKFI K 167477 (BT), OTKA K 116639 (BT), NKFIH K 119225 (PT) and NKFIH PD 121126 (ÁB) projects. The project was supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (BD, OV). AK was funded by the MTA’s Postdoctoral Research Programme. BD and OV were supported by the ÚNKP-17-4-III-DE-160 and ÚNKP-17-4-III-DE-151 New National Excellence Programme of the Ministry of Human Capacities. We are grateful to Aiko Huckauf for improving the English of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Orsolya Valkó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1.

List and mean cover scores of grassland specialist plants recorded on the studied kurgans. Frequency scores refer to the number of kurgans where a certain species was recorded. Red-listed species are marked with an asterisk (XLS 36 kb)

Table S2.

List and mean cover scores of generalist plants recorded on the studied kurgans. Frequency scores refer to the number of kurgans where a certain species was recorded (XLS 76 kb)

Table S3.

Full model selection tables fitted on the species richness of the functional groups of specialist plants (XLS 36 kb)

Table S4.

Full model selection tables fitted on the abundance of the functional groups of specialist plants (XLS 36 kb)

Table S5.

Full model selection tables fitted on the species richness of the functional groups of generalist plants (XLS 36 kb)

Table S6.

Full model selection tables fitted on the abundance of the functional groups of generalist plants (XLS 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deák, B., Valkó, O., Török, P. et al. Landscape and habitat filters jointly drive richness and abundance of specialist plants in terrestrial habitat islands. Landscape Ecol 33, 1117–1132 (2018). https://doi.org/10.1007/s10980-018-0660-x

Download citation

Keywords

  • Biotic interactions
  • Dispersal filter
  • Historical landscape
  • Kurgan
  • Landscape composition
  • Spatial connectivity
  • Temporal connectivity