Skip to main content

Advertisement

Log in

Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Land-use change is a key driver of pollinator declines worldwide. Plantation forests are a major land use worldwide and are likely to expand substantially in the near term, especially with projected cellulosic biofuel production. But little is known about the potential local and landscape-scale impacts of plantation forestry on bees, the most important group of pollinators worldwide.

Objectives

We studied the effects of local management, landscape context, and their interaction on bee abundance and species richness in the southeastern US, in pine plantations and other nearby land uses.

Methods

We sampled bee communities using aerial netting and pan trapping in 85 sites over 3 years.

Results

We found that both landscape composition and configuration are important factors for bee diversity and abundance at the landscape scale, though interestingly many landscape factors showed contrasting directional responses for diversity versus abundance. Removing the four most common species, all in the genus Lasioglossum (and which comprised ~ 45% of all specimens) largely harmonized the results between diversity and abundance. In addition, we found several interactions between local management and landscape factors, all consistent with the idea that compositional heterogeneity and configurational complexity are more important for bee communities in poorer-quality local habitat.

Conclusions

Our results underscore the importance of considering (1) both landscape configuration and composition in analyses, and (2) interactions between local management and landscape factors. The interactions in particular highlight the need to maintain landscape compositional heterogeneity and configurational complexity, particularly in heavily managed landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barto K (2016) MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn

  • Bennett AB, Isaacs R (2014) Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric Ecosyst Environ 193:1–8

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Article  Google Scholar 

  • Bourke D, Stanley D, O’rourke E, Thompson R, Carnus T, Dauber J, Emmerson M, Whelan P, Hecq F, Flynn E, Dolan L, Stout J (2014) Response of farmland biodiversity to the introduction of bioenergy crops: effects of local factors and surrounding landscape context. Gcb Bioenergy 6(3):275–289

    Article  Google Scholar 

  • Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustain Dev 35(3):891–909

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Chamberlain CP, Mills M (2009) Detecting changes in habitat-scale bee foraging in a tropical fragmented landscape using stable isotopes. For Ecol Manage 258(9):1846–1855

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Ehrlich PR (2007) Bee community shifts with landscape context in a tropical countryside. Ecol Appl 17(2):418–430

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45(3):773–783

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339(6127):1611–1615

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag, New York

    Google Scholar 

  • Campbell JW, Miller DA, Martin JA (2016) Switchgrass (Panicum virgatum) intercropping within managed loblolly pine (Pinus taeda) does not affect wild bee communities. Insects 7(4):62. https://doi.org/10.3390/insects7040062

    Article  PubMed Central  Google Scholar 

  • Cane JH (1991) Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J Kansas Entomol Soc 64:406–413

    Google Scholar 

  • Cane JH, Minckley R, Kervin L (2001) Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J Kansas Entomol Soc 73:208–214

    Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  Google Scholar 

  • Chao A, Jost L (2015) Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol Evol 6:873–882

    Article  Google Scholar 

  • Christensen NL (2000) Vegetation of the southeastern coastal plain. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, New York, pp 398–448

    Google Scholar 

  • Craney TA, Surles JG (2002) Model-dependent variance inflation factor cutoff values. Qual Eng 14(3):391–403

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175

    Article  Google Scholar 

  • Energy Independence and Security Act of 2007. Public Law 110–140, vol 121 (2007). https://www.congress.gov/bill/110th-congress/house-bill/6. Accessed 10 May 2017

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81(1):117–142. https://doi.org/10.1017/S1464793105006949

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34(1):487–515

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  Google Scholar 

  • FAO (2012) State of the world’s forests. Food and Agriculture Organization of the United Nations

  • Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, McCoy T, McLeod S, Nelson EJ, Oberhauser KS, Tilman D (2009) Bioenergy and wildlife: threats and opportunities for grassland conservation. Bioscience 59(9):767–777

    Article  Google Scholar 

  • Fletcher RJ, Robertson BA, Evans J, Doran PJ, Alavalapati JR, Schemske DW (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9(3):161–168

    Article  Google Scholar 

  • Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agr Ecosyst Environ 156:123–133

    Article  Google Scholar 

  • Frost C (2006) History and future of the longleaf pine ecosystem. In: Jose S, Jokela EJ, Miller DL (eds) The longleaf pine ecosystem: ecology, silviculture and restoration. Springer, New York, pp 9–48

    Chapter  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhoffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipolito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlof M, Seymour CL, Schuepp C, Szentgyorgyi H, Taki H, Tscharntke T, Vergara CH,  Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127):1608–1611

    Article  CAS  Google Scholar 

  • Goodenough AE, Hart AG, Stafford R (2012) Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS ONE 7(3):e34338

    Article  CAS  Google Scholar 

  • Gottlieb IGW, Fletcher RJ Jr, Nunez-Regueiro MM, Ober H, Smith L, Brosi BJ (2017) Alternative biomass strategies for bioenergy: implications for bird communities across the southeastern United States. Glob Change Biol Bioenergy 9:1606–1617

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    Article  Google Scholar 

  • Gruenewald D (2014) Bee community responses in pine systems to future biofuel cultivation in southeastern US. Master’s thesis, Emory University

  • Hadley AS, Betts MG (2012) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87(3):526–544

    Article  Google Scholar 

  • Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Ascher JS, Baldock KC, Fowler R, Frankie G, Goulson D (2017) The city as a refuge for insect pollinators. Conserv Biol 31(1):24–29

    Article  Google Scholar 

  • Hanula JL, Ulyshen MD, Horn S (2016) Conserving pollinators in North American forests: a review. Nat Areas J 36(4):427–439

    Article  Google Scholar 

  • He HS, DeZonia BE, Mladenoff DJ (2000) An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol 15(7):591–601

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44(1):41–49

    Article  Google Scholar 

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 national land cover database for the conterminous United States-representing a decade of land cover change information. Photogram Eng Remote Sens 81(5):345–354

    Google Scholar 

  • Huang D, Zhou H, Lin L (2011) Biodiesel: an alternative to conventional fuel. Energy Proc 16:1874–1885

    Article  Google Scholar 

  • IPBES (2016) Summary for policymakers of the assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn

    Google Scholar 

  • Jaeger JA (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15(2):115–130

    Article  Google Scholar 

  • Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316(5833):1866–1869

    Article  CAS  Google Scholar 

  • Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC (2012) Intensive agriculture erodes-diversity at large scales. Ecol Lett 15(9):963–970

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16(5):584–599

    Article  Google Scholar 

  • Kline KL, Coleman MD (2010) Woody energy crops in the southeastern United States: two centuries of practitioner experience. Biomass Bioenerg 34(12):1655–1666

    Article  Google Scholar 

  • Langholtz M, Stokes B, Eaton L (2016) 2016 Billion-ton report: advancing domestic resources for a thriving bioeconomy, vol 1: economic availability of feedstock. US Department of Energy, Oak Ridge, TN

  • Lennartson T (2002) Extinction thresholds and disrupted plant—pollinator interactions in fragmented plant populations. Ecology 83:3060–3072

    Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen Tech Rep PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

  • Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl Ecol 10:178–186

    Article  Google Scholar 

  • Michener C (2000) Bees of the World. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Moreira EF, Boscolo D, Viana BF (2015) Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10(4):e0123628

    Article  Google Scholar 

  • Nakazawa M (2017) fmsb: functions for medical statistics book with some demographic data. R package version 0.6.0. https://CRAN.R-project.org/package=fmsb

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120(3):321–326

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1(1):6–18

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GKS, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein AM, Kleijn D, Krishnan S, Lemos CQ, Lindström SAM, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, de O Pereira N, Pisanty G, Potts SG, Reemer M, Rundlöf M, Sheffield CS, Scheper J, Schüepp C, Smith HG, Stanley DA, Stout JC, Szentgyörgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 113(1):146–151

    Article  CAS  Google Scholar 

  • Reynolds C, Fletcher RJ Jr, Carneiro CM, Jennings N, Ke A, LaScaleia MC, Lukhele MB, Mamba ML, Sibiya MD, Austin JD, Magagula CN, Mahlaba T, Monadjem A, Wisely SM, McCleery RA (2018) Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landscape Ecol 33:241–255

    Article  Google Scholar 

  • Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    Article  Google Scholar 

  • Saunders ME (2016) Resource connectivity for beneficial insects in landscapes dominated by monoculture tree crop plantations. Internat J Ag Sustain 14(1):82–99

    Article  Google Scholar 

  • Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38(11):6977–6988

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83(5):1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Westphal C (2007) The interplay of pollinator diversity, pollination services and landscape change. J Appl Ecol 45(3):737–741

    Article  Google Scholar 

  • Temple SA (1986) Predicting impacts of habitat fragmentation on forest birds: a comparison of two models. In: Verner J, Morrison ML, Ralph CJ (eds) Wildlife 2000: modeling habitat relationships of terrestrial vertebrates. University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Timilsina GR, Shrestha A (2010) Biofuels: markets, targets and impacts. Policy research working paper

  • VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version:1.1-221

  • Viana BF, Boscolo D, Neto EMGCM, Lopes L, Lopes A, Fereira P, Pigozzo CM, Primo L (2012) How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol 7(5):31–41

    Article  Google Scholar 

  • Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SP, Szentgyörgyi H, Tscheulin T, Vaissière BE (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78(4):653–671

    Article  Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21(1):213–223

    Article  Google Scholar 

  • Zuur AF, Leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1(1):3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank our numerous field technicians and volunteers for their assistance with data collection, and the many landowners and land managers that allowed access to their properties, especially Loncala, Inc., and Resource Management Service LLC. We thank Sam Droege (USGS) and Ismael Hinojosa (Universidad Autónoma de México) for assistance with bee identifications. We also thank the U.S. Department of Agriculture, USDA-National Institute of Food and Agriculture Initiative Grant No. 2012-67009-20090, the University of Florida’s School of Natural Resources and Environment, and Emory University’s SIRE program and Lester fund for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berry J. Brosi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljanic, A.S., Loy, X., Gruenewald, D.L. et al. Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. Landscape Ecol 34, 1015–1032 (2019). https://doi.org/10.1007/s10980-018-0651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0651-y

Keywords

Navigation