Skip to main content
Log in

A tale of two wildfires; testing detection and prediction of invasive species distributions using models fit with topographic and spectral indices

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Developing species distribution models (SDMs) to detect invasive species cover and evaluate habitat suitability are high priorities for land managers.

Objectives

We tested SDMs fit with different variable combinations to provide guidelines for future invasive species model development based on transferability between landscapes.

Methods

Generalized linear model, boosted regression trees, multivariate adaptive regression splines, and Random Forests were fit with location data for high cheatgrass (Bromus tectorum) cover in situ for two post-burn sites independently using topographic indices, spectral indices derived from multiple dates of Landsat 8 satellite imagery, or both. Models developed for one site were applied to the other, using independent cheatgrass cover data from the respective ex situ site to test model transferability.

Results

Fitted models were statistically robust and comparable when fit with at least 200 cover plots in situ and transferred to the ex situ site. Only the Random Forests models were robust when fit with a small number of cover plots in situ.

Conclusions

Our study indicated spectral indices can be used in SDMs to estimate species cover across landscapes (e.g., both within the same Landsat scene and in an adjacent Landsat scene). Important considerations for transferability include the model employed, quantity of cover data used to train/test the models, and phenology of the species coupled with the timing of imagery. The results also suggest that when cover data are limited, SDMs fit with topographic indices are sufficient for evaluating cheatgrass habitat suitability in new post-disturbance landscapes; however, spectral indices can provide a more robust estimate for detection based on local phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Anderson D, Burnham K (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manage 66:912–918

    Article  Google Scholar 

  • Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Anderson R, Lew D, Townsend Peterson A (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Balch JK, Bradley BA, D’Antonio CM, Gómez-Dans J (2013) Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Chang Biol 19:173–183

    Article  PubMed  Google Scholar 

  • Barron AR, Xiao X (1991) Discussion: multivariate adaptive regression splines. Ann Stat 19:67–82

    Article  Google Scholar 

  • Boyte S, Wylie BK, Major DJ (2016) cheatgrass percent cover change: comparing recent estimates to climate change—driven predictions in the Northern Great Basin. Rangel Ecol Manag 69:265–279

    Article  Google Scholar 

  • Bradley BA (2015) Predicting abundance with presence-only models. Landscape Ecol. https://doi.org/10.1007/s10980-015-0303-4

    Article  Google Scholar 

  • Bradley B, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–1147

    Article  PubMed  Google Scholar 

  • Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14:334–346

    Article  Google Scholar 

  • Bradley BA, Olsson AD, Wang O, Dickson BG, Pelech L, Sesnie SE, Zachmann LJ (2012) Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecol Model 244:57–64

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bromberg JE, Kumar S, Brown CS, Stohlgren TJ (2011) Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park. Invasive Plant Sci Manag 4:173–182

    Article  Google Scholar 

  • Brooks ML, D’antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688

    Article  Google Scholar 

  • Brown PM, Shepperd WD (2001) Fire history and fire climatology along a 5 degree gradient in latitude in Colorado and Wyoming, USA. Palaeobotanist 50:133–140

    Google Scholar 

  • Chambers J, Roundy B (2007) What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecol Monogr 77:117–145

    Article  Google Scholar 

  • Cohen WB, Maiersperger TK, Spies TA, Oetter DR (2010) Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. Int J Remote Sens 22:2279–2310

    Article  Google Scholar 

  • Crall AW, Jarnevich CS, Panke B, Young N, Renz M, Morisette J (2013) Using habitat suitability models to target invasive plant species surveys. Ecol Appl 23:60–72

    Article  PubMed  Google Scholar 

  • D’Antonio C, Vitousek P (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Article  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius K, Studies TE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • DiTomaso JM (2000) Invasive weeds in rangelands: species, impacts, and management. Weed Sci 48:255–265

    Article  CAS  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  PubMed  CAS  Google Scholar 

  • Evangelista PH, Stohlgren TJ, Morisette JT, Kumar S (2009) Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data. Remote Sens 1:519–533

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Chang Biol 19:473–483

    Article  PubMed  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Friedman JH, Roosen CB (1995) An introduction to multivariate adaptive regression splines. Stat Methods Med Res 4:197–217

    Article  PubMed  CAS  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11

    Article  Google Scholar 

  • Gausman H, Allen W, Cardenas R (1969) Reflectance of cotton leaves and their structure. Remote Sens Environ 1:19–22

    Article  Google Scholar 

  • Gordon DR, Welker JM, Menke JW, Rice KJ (1989) Competition for soil water between annual plants and blue oak (Quercus douglasix) seedlings. Oecologia 79:533–541

    Article  PubMed  CAS  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hijmans RJ, Elith J (2013) Species distribution modeling with R. R CRAN Project

  • Jarnevich CS, West AM (2018) Data for cheatgrass mapping in Squirrel Creek Wildfire and Arapaho Wildfire, Wyoming in 2014. ScienceBase Repository, Available online https://doi.org/10.5066/p9w0vf4f

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Kaufmann MR, Binkley D, Fulé PZ, Johnson M, Stephens S, Swetnam T (2007) Defining old growth for fire-adapted forests of the western United States. Ecol Soc 12:15

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Knapp PA (1996) Cheatgrass (Bromus tectorum L.) dominance in the Great Basin Desert. Glob Environ Chang 6:37–52

    Article  Google Scholar 

  • Kohl MT, Hebblewhite M, Cleveland SM, Callaway RM (2012) Forage value of invasive species to the diet of rocky mountain elk. Rangelands 34:24–28

    Article  Google Scholar 

  • Kumar S, Graham J, West AM, Evangelista PH (2014a) Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Comput Electron Agric 103:55–62

    Article  Google Scholar 

  • Kumar S, Neven L, Yee W (2014b) Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecol Appl 5:1–23

    CAS  Google Scholar 

  • Lazo JD, van Gils H, Groen T, Navarro-Cerrillo R (2016) Transferability of species distribution models. A case study of the fungus Phytophthora cinnamomi in Andalusia and Southwest Australia. Ecol Model 320:62–70

    Article  Google Scholar 

  • Link SO, Keeler CW, Hill RW, Hagen E (2006) Bromus tectorum cover mapping and fire risk. Int J Wildl Fire 15:113–119

    Article  Google Scholar 

  • Luizza MW, Evangelista PH, Jarnevich CS, West A, Stewart H (2016) Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish. Environ Manage 58:144–163

    Article  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Merow C, Smith MJ, Edwards TC, Guisan A, McMahon SM, Normand S, Thuiller W, Wüest RO, Zimmermann NE, Elith J (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography. https://doi.org/10.1111/ecog.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • Monty A, Brown CS, Johnston DB (2013) Fire promotes downy brome (Bromus tectorum L.) seed dispersal. Biol Invasions 15:1113–1123

    Article  Google Scholar 

  • Morán-Ordóñez A, Lahoz-Monfort JJ, Elith J, Wintle BA (2017) Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions? Glob Ecol Biogeogr 26:371–384

    Article  Google Scholar 

  • Morisette JT, Jarnevich CS, Holcombe TR, Talbert CB, Ignizio D, Talbert MK, Silva C, Koop D, Swanson A, Young NE (2013) VisTrails SAHM: visualization and workflow management for species habitat modeling. Ecography 36:129–135

    Article  Google Scholar 

  • Myers VI, Allen WA (1968) Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture. Appl Opt 7:1819–1838

    Article  PubMed  CAS  Google Scholar 

  • Paschke MW, McLendon T, Redente EF (2000) Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems 3:144–158

    Article  CAS  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412

    Article  Google Scholar 

  • Peterson E (2005) Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM + data. Int J Remote Sens 26:37–41

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Purevdorj TS, Tateishi R, Ishiyama T, Honda Y (1998) Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 19:3519–3535

    Article  Google Scholar 

  • Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136

    Article  Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.r-project.org/

  • Rose RA, Byler D, Eastman JR, Fleishman E, Geller G, Goetz S, Guild L, Hamilton H, Hansen M, Headley R, Hewson J (2015) Ten ways remote sensing can contribute to conservation. Conserv Biol 29:350–359

    Article  PubMed  Google Scholar 

  • Schroeder TA, Cohen WB, Song C, Canty MJ, Yang Z (2006) Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sens Environ 103:16–26

    Article  Google Scholar 

  • Schulte D, Fowler C, Krail S, Miltenberger O (2015) Wyoming ecological forecasting: mapping cheatgrass distribution and phenology in a post-wildfire landscape in Wyoming’s Medicine Bow National Forest. Technical Report published by the NASA DEVELOP Program, Fort Collins, CO

    Google Scholar 

  • Sherrill KR, Romme WH (2012) Spatial variation in postfire cheatgrass: Dinosaur National Monument, USA. Fire Ecol 8:38–56

    Article  Google Scholar 

  • Singh N, Glenn NF (2009) Multitemporal spectral analysis for cheatgrass (Bromus tectorum) classification. Int J Remote Sens 30:3441–3462

    Article  Google Scholar 

  • Stephens SL, Agee JK, Fulé PZ, North MP, Romme WH, Swetnam TW, Turner MG (2013) Managing forests and fire in changing climates. Science 80(342):41–42

    Article  Google Scholar 

  • Stohlgren T, Barnett D, Simonson S (2010) Beyond North American weed management association standards (pp. 1–10). Available online http://science.nature.nps.gov/im/monitor/meetings/FtCollins_02/StohlgrenBeyondNAWMA.pdf

  • Stohlgren TJ, Szalanski AL, Gaskin J, Young N, West A, Jarnevich CS, Tripodi A (2014) From hybrid swarms to swarms of hybrids. Environ Ecol Res 2:311–318

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 80(240):1285–1293

    Article  Google Scholar 

  • Tan B, Morisette JT, Wolfe RE, Gao F, Ederer GA, Nightingale J, Pedelty JA (2011) An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE J Sel Top Appl Earth Obs Remote Sens 4:361–371

    Article  Google Scholar 

  • Upadhyaya MK (1986) Biology of Bromus tectorum. Can J Plant Sci 66:689–709

    Article  Google Scholar 

  • Wenger SJ, Olden JD (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol Evol 3:260–267

    Article  Google Scholar 

  • West AM, Evangelista PH, Jarnevich CS, Kumar S, Swallow A, Luizza MW, Chignell SM (2017) Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: an iterative, adaptable approach that employs open-source data and software. Int J Appl Earth Obs Geoinf 59:135–146

    Article  Google Scholar 

  • West AM, Evangelista PH, Jarnevich CS, Young NE, Stohlgren TJ, Talbert C, Talbert M, Morisette J, Anderson R (2016a) Integrating remote sensing with species distribution models; mapping tamarisk invasions using the software for assisted habitat modeling (SAHM). J Vis Exp. https://doi.org/10.3791/54578

    Article  PubMed Central  PubMed  Google Scholar 

  • West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J (2016b) Field validation of an invasive species Maxent model. Ecol Inform 36:126–134

    Article  Google Scholar 

  • West AM, Kumar S, Wakie T, Brown CS, Stohlgren TJ, Laituri M, Bromberg J (2015) Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS ONE. https://doi.org/10.1371/journal.pone.0117893

    Article  PubMed  PubMed Central  Google Scholar 

  • Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP (2015) The global Landsat archive: status, consolidation, and direction. Remote Sens Environ 185:271–283

    Article  Google Scholar 

  • Young NE, Anderson RS, Chignell SM, Vorster AG, Lawrence R, Evangelista PH (2017) Survival guide to Landsat preprocessing. Ecology. https://doi.org/10.1002/ecy.1730

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank many individuals from the U.S. Forest Service, Wyoming Game and Fish, and Colorado State University who helped with field data collection for this study. Special thanks to Katherine Haynes and Ryan Amundson for their continued insights and interest in this project. We thank Thomas Stohlgren for providing comments and edits on an early version of this manuscript. We would like to thank the U.S. Geological Survey’s Invasive Species Program for funding for this research. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. West.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

West, A.M., Evangelista, P.H., Jarnevich, C.S. et al. A tale of two wildfires; testing detection and prediction of invasive species distributions using models fit with topographic and spectral indices. Landscape Ecol 33, 969–984 (2018). https://doi.org/10.1007/s10980-018-0644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0644-x

Keywords

Navigation