Forest succession and climate variability interacted to control fire activity over the last four centuries in an Alaskan boreal landscape

Abstract

Context

The boreal forest is globally important for its influence on Earth’s energy balance, and its sensitivity to climate change. Ecosystem functioning in boreal forests is shaped by fire activity, so anticipating the impacts of climate change requires understanding the precedence for, and consequences of, climatically induced changes in fire regimes. Long-term records of climate, fire, and vegetation are critical for gaining this understanding.

Objectives

We investigated the relative importance of climate and landscape flammability as drivers of fire activity in boreal forests by developing high-resolution records of fire history, and characterizing their centennial-scale relationships to temperature and vegetation dynamics.

Methods

We reconstructed the timing of fire activity in interior Alaska, USA, using seven lake-sediment charcoal records spanning CE 1550–2015. We developed individual and composite records of fire activity, and used correlations and qualitative comparisons to assess relationships with existing records of vegetation and climate.

Results

Our records document a dynamic relationship between climate and fire. Fire activity and temperature showed stronger coupling after ca. 1900 than in the preceding 350 yr. Biomass burning and temperatures increased concurrently during the second half of the twentieth century, to their highest point in the record. Fire activity followed pulses in black spruce establishment.

Conclusions

Fire activity was facilitated by warm temperatures and landscape-scale dominance of highly flammable mature black spruce, with a notable increase in temperature and fire activity during the twenty-first century. The results suggest that widespread burning at landscape scales is controlled by a combination of climate and vegetation dynamics that together drive flammability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ali AA, Carcaillet C, Bergeron Y (2009) Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Glob Change Biol 15:1230–1241

    Article  Google Scholar 

  2. Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J (2009) Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob Change Biol 15:578–600

    Article  Google Scholar 

  3. Barrett K, McGuire AD, Hoy EE, Kasischke ES (2011) Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity. Ecol Appl 21:2380–2396

    Article  CAS  PubMed  Google Scholar 

  4. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  5. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  6. Boggs K, Flagstad T, Boucher T, Kuo T, Fehringer D, Guyer S, Aisu M (2016) Vegetation map and classification: Northern, western and interior Alaska, 2nd edn. Anchorage, AK

    Google Scholar 

  7. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  8. Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89

    Article  CAS  PubMed  Google Scholar 

  9. Brown CD, Johnstone JF (2012) Once burned, twice shy: repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. For Ecol Manage 266:34–41

    Article  Google Scholar 

  10. Calder WJ, Parker D, Stopka CJ, Jiménez-Moreno G, Shuman BN (2015) Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc Natl Acad Sci USA 112:13261–13266

    Article  CAS  PubMed  Google Scholar 

  11. Chapin FS, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33:361–365

    Article  PubMed  Google Scholar 

  12. Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223

    Article  Google Scholar 

  13. Clark JS, Royall PD (1996) Local and regional sediment charcoal evidence for fire regimes in presettlement north-eastern North America. J Ecol 84:365

    Article  Google Scholar 

  14. Dash CB, Fraterrigo JM, Hu FS (2016) Land cover influences boreal-forest fire responses to climate change: geospatial analysis of historical records from Alaska. Landscape Ecol 31:1781–1793

    Article  Google Scholar 

  15. Duffy PA (2006) Interactions among climate, fire, and vegetation in the Alaskan boreal forest. PhD Dissertation, Department of Forest Sciences, University of Alaska, Fairbanks

  16. Duffy PA, Walsh JE, Graham JM, Mann DH, Rupp TS (2005) Imapcts of large-scale atmospheric–ocean variability on Alaskan fire season severity. Ecol Appl 15:1317–1330

    Article  Google Scholar 

  17. Flannigan M, Stocks B, Turetsky M, Wotton M (2009) Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Change Biol 15:549–560

    Article  Google Scholar 

  18. Gavin DG, Brubaker LB, Lertzman KP (2003) An 1800-year record of the spatial and temporal distribution of fire from the west coast of Vancouver Island, Canada. Can J For Res 33:573–586

    Article  Google Scholar 

  19. Genet H, McGuire AD, Barrett K, Breen A, Euskirchen ES, Johnstone JF, Kasischke ES, Melvin AM, Bennett A, Mack MC, Rupp TS, Schuur AEG, Turetsky MR, Yuan F (2013) Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ Res Lett 8:045016

    Article  CAS  Google Scholar 

  20. Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, Genries A, Bergeron Y (2013) Vegetation limits the impact of a warm climate on boreal wildfires. New Phytol 199:1001–1011

    Article  PubMed  Google Scholar 

  21. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  22. Héon J, Arseneault D, Parisien M-A (2014) Resistance of the boreal forest to high burn rates. Proc Natl Acad Sci USA 111:13888–13893

    Article  CAS  PubMed  Google Scholar 

  23. Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  24. Higuera PE, Gavin DG, Bartlein PJ, Hallett DJ (2010) Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations. Int J Wildland Fire 19:996–1014

    Article  Google Scholar 

  25. Higuera PE, Peters ME, Brubaker LB, Gavin DG (2007) Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quatern Sci Rev 26:1790–1809

    Article  Google Scholar 

  26. Higuera PE, Whitlock C, Gage JA (2011) Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA. Holocene 21:327–341

    Article  Google Scholar 

  27. Hu FS, Brubaker LB, Gavin DG, Higuera PE, Lynch JA, Rupp TS, Tinner W (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitig Adapt Strat Glob Change 11:829–846

    Article  Google Scholar 

  28. Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, Cambridge

    Google Scholar 

  29. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378

    Article  Google Scholar 

  30. Johnstone JF, Chapin FS (2006) Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9:268–277

    Article  Google Scholar 

  31. Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky MR (2010a) Fire, climate change, and forest resilience in interior Alaska. Can J For Res 40:1302–1312

    Article  Google Scholar 

  32. Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC (2010b) Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Change Biol 16:1281–1295

    Article  Google Scholar 

  33. Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33:L09703

    Google Scholar 

  34. Kasischke ES, Verbyla DL, Rupp TS, McGuire AD, Murphy KA, Jandt R, Barnes JL, Hoy EE, Duffy PA, Calef M, Turetsky MR (2010) Alaska’s changing fire regime—implications for the vulnerability of its boreal forests. Can J For Res 40:1313–1324

    Article  Google Scholar 

  35. Kasischke ES, Williams D, Barry D (2002) Analysis of the patterns of large fires in the boreal forest region of Alaska. Int J Wildland Fire 11:131–144

    Article  Google Scholar 

  36. Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci USA 110:13055–13060

    Article  PubMed  Google Scholar 

  37. Kelly RF, Higuera PE, Barrett CM, Hu FS (2011) A signal-to-noise index to quantify the potential for peak detection in sediment–charcoal records. Quatern Res 75:11–17

    Article  Google Scholar 

  38. Krawchuk MA, Moritz MA (2011) Constraints on global fire activity vary across a resource gradient. Ecology 92:121–132

    Article  PubMed  Google Scholar 

  39. Long CJ, Whitlock C, Bartlein PJ, Millspaugh SH (1998) A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can J For Res 28:774–787

    Article  Google Scholar 

  40. Lynch JA, Clark JS, Bigelow NH, Edwards ME, Finney BP (2002) Geographic and temporal variations in fire history in boreal ecosystems of Alaska. J Geophys Res 108:1–17

    Article  Google Scholar 

  41. Lynch JA, Clark JS, Stocks BJ (2004a) Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Can J For Res 34:1642–1656

    Article  Google Scholar 

  42. Lynch JA, Hollis JL, Hu FS (2004b) Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. J Ecol 92:477–489

    Article  Google Scholar 

  43. Macias Fauria M, Johnson EA (2008) Climate and wildfires in the North American boreal forest. Philos Trans R Soc B 363:2315–2327

    Article  Google Scholar 

  44. Mann DH, Scott Rupp T, Olson MA, Duffy PA (2012) Is Alaska’s boreal forest now crossing a major ecological threshold? Arct Antarct Alp Res 44:319–331

    Article  Google Scholar 

  45. Nowacki GJ, Spencer P, Fleming M, Brock T, Jorgenson T (2003) Unified Ecoregions of Alaska, 2001. Unified ecoregions of Alaska and Neighboring Territories, U.S. Geological Survey Map

  46. Parisien MA, Parks SA, Krawchuk MA, Flannigan MD, Bowman LM, Moritz MA (2011) Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005. Ecol Appl 21:789–805

    Article  PubMed  Google Scholar 

  47. Parks SA, Holsinger LM, Miller C, Nelson CR (2015) Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecol Appl 25:1478–1492

    Article  PubMed  Google Scholar 

  48. Parks SA, Miller C, Holsinger LM, Baggett LS, Bird BJ (2016) Wildland fire limits subsequent fire occurrence. Int J Wildland Fire 25:182–190

    Article  Google Scholar 

  49. Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Glob Ecol Biogeogr 22:728–736

    Article  Google Scholar 

  50. Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 144–169

    Google Scholar 

  51. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  52. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132

    Article  CAS  PubMed  Google Scholar 

  53. Shenoy A, Johnstone JF, Kasischke ES, Kielland K (2011) Persistent effects of fire severity on early successional forests in interior Alaska. For Ecol Manage 261:381–390

    Article  Google Scholar 

  54. SNAP: Scenarios Network for Alaska and Arctic Planning, University of Alaska (2015) Historical Monthly and Derived Temperature Products Downscaled from CRU TS data via the delta method - 2 km. http://data.snap.uaf.edu/data/Base/AK_CAN_2km/historical/CRU_TS/Historical_Monthly_and_Derived_Temperature_Products_2km_CRU_TS/. Accessed Jan 2016

  55. Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landscape Ecol 3:245–252

    Article  Google Scholar 

  56. Whitlock C, Higuera PE, McWethy DB, Briles CE (2010) Paleoecological perspective on fire ecology: revisiting the fire regime concept. Open Ecol J 3:6–23

    Article  Google Scholar 

  57. Wiles GC, D’Arrigo RD, Barclay D, Wilson RS, Jarvis SK, Vargo L, Frank D (2014) Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. Holocene 24:198–208

    Article  Google Scholar 

  58. Young AM, Higuera PE, Duffy PA, Hu FS (2017) Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 40:606–617

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge field assistance from Alex Shapiro and Meghan Foard, and laboratory assistance from Meghan Foard, Cassidy Robertson, Camie Westfall, Kerry Sullivan, and Andrew Neumann. We thank Paul Duffy for sharing information on the tree-ring dataset, Tom Brown for assistance with radiocarbon analysis, and Ryan Kelly for help with data analysis and comments on an earlier version of this manuscript. The manuscript was improved by comments from Ashley Ballantyne, Solomon Dobrowski, Carl Seielstad, and two anonymous reviewers. The work was supported by the National Science Foundation through grant EF-1241846/1606351 to P. E. Higuera, and a University of Minnesota LacCore visiting Graduate Student Award to T. J. Hoecker. All data and code used in this manuscript are publicly available via the Dryad Digital Repository https://doi.org/10.5061/dryad.hg19c6n, or upon request to the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Hoecker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11732 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoecker, T.J., Higuera, P.E. Forest succession and climate variability interacted to control fire activity over the last four centuries in an Alaskan boreal landscape. Landscape Ecol 34, 227–241 (2019). https://doi.org/10.1007/s10980-018-00766-8

Download citation

Keywords

  • Boreal forest
  • Fire
  • Paleoecology
  • Multi-proxy
  • Climate
  • Black spruce