Skip to main content

Advertisement

Log in

Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Purpose

Most of the agricultural landscape in Europe, and elsewhere, consists of mosaics with scattered fragments of semi-natural habitat like small forest fragments. Mutual interactions between forest fragments and agricultural areas influence ecosystem processes such as nutrient cycling, a process strongly mediated by the macrodetritivore community, which is however, poorly studied. We investigated macrodetritivore distribution patterns at local and landscape-level and used a key functional trait (desiccation resistance) to gain mechanistic insights of the putative drivers.

Methods

Macrodetritivores were sampled in forest edges-centres of 224 European forest fragments across 14 landscapes opposing in land use intensity. We used a multilevel analysis of variance to assess the relative contribution of different spatial scales in explaining activity-density and Shannon-diversity of woodlice and millipedes, together with a model-based analysis of the multivariate activity-density data testing the effect on species composition. Secondly, we tested if desiccation resistance of macrodetritivores varied across communities at different spatial scales using linear mixed effect models.

Results

Forest edge-centre and landscape use intensity determined activity-density and community composition of macrodetritivores in forest fragments, while fragment characteristics like size and continuity were relatively unimportant. Forest edges and higher intensity landscapes supported higher activity-density of macrodetritivores and determined species composition. Forest edges sustained woodlouse communities dominated by more drought tolerant species.

Conclusions

Landscape use intensity and forest edges are main drivers in macrodetritivore distribution in forest fragments with desiccation resistance a good predictor of macrodetritivore distribution. Key functional traits can help us to predict changes in community structure in changing landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan E, Bossdorf O, Dormann CF, Prati D, Gossner MM, Tscharntke T, Blüthgen N, Bellach M, Birkhofer K, Boch S, Böhm S, Börschig C, Chatzinotas A, Christ S, Daniel R, Diekötter T, Fischer C, Friedl T, Glaser K, Hallmann C, Hodac L, Hölzel N, Jung K, Klein AM, Klaus VH, Kleinebecker T, Krauss J, Lange M, Morris EK, Müller J, Nacken H, Pašalić E, Rillig MC, Rothenwöhrer C, Schall P, Scherber C, Schulze W, Socher SA, Steckel J, Steffan-Dewenter I, Türke M, Weiner CN, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schöning I, Pfeiffer S, König-Ries B, Buscot F, Linsenmair KE, Schulze E-D, Weisser WW, Fischer M (2013) Interannual variation in land-use intensity enhances grassland multidiversity. Proc Natl Acad Sci USA 111:308–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JM (1988) Invertebrate-mediated transport processes in soils. Agr Ecosyst Environ 24:5–19

    Article  Google Scholar 

  • Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. J Biogeogr 35:675–681

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Bojesen Christensen RH, Singmann H, Dai B, Grothendieck G, Green P (2016) lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-12. https://cran.r-project.org/web/packages/lme4/

  • Beier C, Gundersen P (1989) Atmospheric deposition to the edge of a Spruce forest in Denmark. Environ Pollut 60:257–271

    Article  CAS  PubMed  Google Scholar 

  • Belovsky GE, Slade JB (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proc Natl Acad Sci USA 97:14412–14417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindlish R, Jackson TJ, Gasiewski A, Stankov B, Klein M, Cosh MH, Mladenova I, Watts C, Vivoni E, Lakshmi V, Bolten J, Keefer T (2008) Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions. Remote Sens Environ 112:375–390

    Article  Google Scholar 

  • Boetzl FA, Schneider G, Krauss J (2016) Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. J Insect Conserv 20:49–57

    Article  Google Scholar 

  • Bogyó D, Magura T, Nagy DD, Tóthmérész B (2015) Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior – forest edge – grassland habitat complex. ZooKeys 510:181–195

    Article  Google Scholar 

  • Broly P, Devigne L, Deneubourg J-L, Devigne C (2014) Effects of group size on aggregation against desiccation in woodlice (Isopoda: Oniscidea). Physiol Entomol 39:165–171

    Article  Google Scholar 

  • Broly P, Devigne C, Deneubourg J-L (2015) Body shape in terrestrial isopods: a morphological mechanism to resist desiccation? J Morphol 276:1283–1289

    Article  PubMed  Google Scholar 

  • Brunke AJ, O’Keefe L, Bahlai CA, Sears MK, Hallett RH (2012) Guilty by association: an evaluation of millipedes as pests of carrot and sweet potato. J Appl Entomol 136:772–780

    Article  Google Scholar 

  • Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA, Guo J, Li P, Riddell A (2015) Stan: a probabilistic programming language. J Stat Softw 76(1):1–32

    Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob Ecol Biogeogr 14:213–221

    Article  Google Scholar 

  • David J-F (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    Article  CAS  Google Scholar 

  • David J-F, Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol Rev 85:881–895

    PubMed  Google Scholar 

  • De Smedt P, Wuyts K, Baeten L, De Schrijver A, Proesmans W, De Frenne P, Ampoorter E, Remy E, Gijbels M, Hermy M, Bonte D, Verheyen K (2016) Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edge-to-interior gradients. Insect Conserv Div 9:456–469

    Article  Google Scholar 

  • de Vries FT, Thébault E, Liiri M Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110:14296–14301

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekoninck W, Maelfait J-P, Desender K, Grootaert P (2005) Comparative study of the terrestrial isopod faunas of ancient forests and afforested former agricultural fields. B Soc Roy Belg Entomol 75:271–279

    Google Scholar 

  • Delgado JD, Arroyo NL, Arévalo JR, Fernández-Palacios JM (2007) Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc Urban Plan 81:328–340

    Article  Google Scholar 

  • Dias ATC, Krab EJ, Mariën J, Zimmer M, Cornelissen JHC, Ellers J, Wardle DA, Berg MP (2013) Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia 172:667–677

    Article  PubMed  Google Scholar 

  • Didham RK, Barker GM, Bartlam S, Deakin EL, Denmead LH, Fisk LM, Peters JMR, Tylianakis JM, Wright HR, Schipper LA (2015) Agricultural intensification exacerbates spillover effects on soil biochemistry in adjacent forest remnants. PLoS ONE 10:e0116474

    Article  PubMed  PubMed Central  Google Scholar 

  • Diekötter T, Wamser S, Wolters V, Birkhofer K (2010) Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agr Ecos Environ 137:108–112

    Article  Google Scholar 

  • Forman RT, Godron M (1981) Patches and structural components for a landscape ecology. Bioscience 31:733–740

    Article  Google Scholar 

  • Gehlhausen S, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol 147:21–35

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerlach A, Russell DJ, Jaeschke B, Römbke J (2014) Feeding preferences of native terrestrial isopod species (Oniscidea, Isopoda) for native and introduced litter. Appl Soil Ecol 83:95–100

    Article  Google Scholar 

  • Grelle C, Fabre M-C, Leprêtre A, Descamps M (2000) Myriapod and isopod communities in soils contaminated by heavy metals in northern France. Eur J Soil Sci 51:425–433

    Article  CAS  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Adv 1:e1500052

    Article  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic Press, San Diego

    Google Scholar 

  • Harris LD (1988) Edge effects and conservation of biotic diversity. Conserv Biol 2:330–332

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Sys 36:191–218

    Article  Google Scholar 

  • Heithecker TD, Halpern CB (2007) Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For Ecol Manag 248:163–173

    Article  Google Scholar 

  • Hendrickx F, Maelfait J-P, van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    Article  PubMed  Google Scholar 

  • Hornung E (2011) Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behaviour. Terr Arthropod Rev 4:95–130

    Article  Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Römbke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2015) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-project.org/web/packages/FD

  • Madeira F, Tscharntke T, Elek Z, Kormann UG, Pons X, Rösch V, Samu F, Scherber C, Batáry P (2016) Spillover of arthropods from cropland to protected calcareous grassland—the neighbouring habitat matters. Agr Ecosys Environ 235:127–133

    Article  Google Scholar 

  • Martins da Silva P, Berg MP, Alves da Silva A, Dias S, Leitão PJ, Chamberlain D, Niemelä J, Serrano ARM, Sousa JP (2015) Soil fauna through the landscape window: factors shaping surface-and soil-dwelling communities across spatial scales in cork-oak mosaics. Landsc Ecol 30:1511–1526

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Moretti M, Dias ATC, de Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckninger E, Sousa JP, Ellers J, Berg MP (2016) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol. https://doi.org/10.1111/1365-2435.12776

    Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edquar MJ, Feldman A, Garon M, Harrison ML, Alhusseini T, Ingram DJ, Itescu Y, Kattqe J, Kemp V, Kirkpatrick L, Kleyer M, Correia DL, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HR, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JP, Purvis A (2015) Global land-use impacts on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Normann C, Tscharntke T, Scherber C (2016) How tree diversity and edge-center transitions interact in determining herb layer vegetation in Germany’s largest deciduous forest. J Plant Ecol 9:498–507

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agr Ecosys Environ 74:157–165

    Article  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA , Banks-Leite C, Wearn OR, Wearn CJ, Butchart SHM, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    CAS  PubMed  Google Scholar 

  • Purse BV, Gregory SJ, Harding P, Roy HE (2012) Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods—a case study of British woodlice (Isopoda: Oniscidae). Eur J Entomol 109:543–552

    Article  Google Scholar 

  • Qian SS, Shen Z (2007) Ecological applications of multilevel analysis of variance. Ecology 88:2489–2495

    Article  PubMed  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Reichle D (1968) Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology 49:538–542

    Article  Google Scholar 

  • Remy E, Wuyts K, Boeckx P, Ginzburg S, Gundersen P, Demey A, Van Den Bulcke J, Van Acker J, Verheyen K (2016) Strong gradients in nitrogen and carbon stocks at temperate forest edges. For Ecol Manag 376:45–58

    Article  Google Scholar 

  • Remy E, Wuyts K, Van Nevel L, De Smedt P, Boeckx P, Verheyen K (2017) Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems: 1-17

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124–131

    Article  CAS  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2006) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140

    Article  Google Scholar 

  • Tajovský K, Hošek J, Hofmeister J, Wytwer J (2012) Assemblages of terrestrial isopods (Isopoda, Oniscidea) in a fragmented forest landscape in Central Europe. Zookeys 176:189–198

    Article  Google Scholar 

  • Topp W, Kappes H, Kulfan J, Zach P (2006) Distribution pattern of Woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovakia). Soil Biol Biochem 38:43–50

    Article  CAS  Google Scholar 

  • Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J Appl Ecol 29:485–491

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Van Calster H, Vandenberghe R, Ruysen M, Verheyen K, Hermy M, Decocq G (2008) Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J Ecol 96:927–936

    Article  Google Scholar 

  • Wang Y, Naumann U, Wright S, Eddelbuettel D, Warton D (2016) mvabund: statistical methods for analysing multivariate abundance data. R package version 3.11.9. https://cran.r-project.org/web/packages/mvabund/

  • Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Method Ecol Evol 3:89–101

    Article  Google Scholar 

  • Wolters V (2001) Biodiversity of soil fauna and his function. Eur J Soil Biol 37:221–227

    Article  Google Scholar 

  • Woodcock BA (2004) Pitfall trapping in ecological studies. In: Leather SR (ed) Insect sampling in forest ecosystems Methods in Ecology Series. Blackwell, Oxford

    Google Scholar 

  • Wuyts K, De Schrijver A, Staelens J, Gielis M, Geudens G, Verheyen K (2008) Patterns of throughfall deposition along a transect in forest edges of silver birch and Corsican pine. Can J For Res 38:449–461

    Article  Google Scholar 

  • Wuyts K, De Schrijver A, Staelens J, Van Nevel L, Adriaenssens S, Verheyen K (2011) Soil inorganic N leaching in edges of different forest types subject to high N deposition loads. Ecosystems 14:818–834

    Article  CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the ERA-Net BiodivERsA project smallFOREST, with the national funders ANR (France), MINECO (Spain), FORMAS (Sweden), ETAG (Estonia), DFG (Germany), BELSPO (Belgium) and DFG (Germany) part of the 2011 BiodivERsA call for research proposals. P.D.S. and W.P. each hold a doctoral fellowship of the Research Foundation-Flanders (FWO). The research of K.V. is supported by the ERC Consolidator Grant 614839—PASTFORWARD. D.B. and L.B. are supported by the FWO research network EVENET. Many thanks to Gert Arijs, Kent Hansson, Marco Langer, Vincent Le Roux, Jessica Lindgren, Matthias Reiche, Sabine Sigfridsson and Rieneke Vanhulle for help during field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallieter De Smedt.

Additional information

Data accessibility

All data is available in the smallFOREST geodatabase. Access to this database can be achieved after contacting the smallFOREST geodatabase management committee (http://www.u-picardie.fr/smallforest/uk/).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Smedt, P., Baeten, L., Proesmans, W. et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecol 33, 407–421 (2018). https://doi.org/10.1007/s10980-017-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0607-7

Keywords

Navigation