Skip to main content

Advertisement

Log in

Anthropogenic landscapes support fewer rare bee species

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The response of rare species to human land use is poorly known because rarity is difficult to study; however, it is also important because rare species compose most of biodiversity, and are disproportionately vulnerable. Regional bee pollinator faunas have not been assessed for rarity outside of Europe. Therefore, we do not know to what extent anthropogenic landscapes support rare North American bee biodiversity.

Objectives

We ask how richness and abundance of bee species respond to land use, within quartiles of species defined by their numerical, phenological, and geographical rarity.

Methods

We conducted a field study to sample bee communities in forested, agricultural, and urban landscapes replicated across a large spatial extent of the northeastern United States. We used large independent data sets to classify observed bee species according to three forms of rarity: their numerical rarity (low regional frequency in a museum-based data set), phenological rarity (short flight season length) and geographical rarity (small range size).

Results

For all three forms of rarity, we found half as many rare bee species in agricultural landscapes compared to forest. We found half as many phenologically rare species in urban landscapes. Bees that had both shorter flight seasons and smaller range sizes were between one-third and one-half as rich in both types of anthropogenic landscapes, regardless of regional frequency.

Conclusions

Although a minority of rare bee species were found in anthropogenic landscapes, our overall conclusion is that the native vegetation of our region, forest, is critical for supporting rare bee biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arduser M (2016) Key to Osmia females known from eastern North America (east of the Great Plains). https://www.pwrc.usgs.gov/nativebees/Keys.html Accessed 1 Oct 2016

  • Ascher JS (2006–2017) AMNH BEES species occurrence database. http://www.discoverlife.org/mp/20m?kind=AMNH_BEES. Accessed 1 Nov 2017

  • Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Pott SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282:20142849

  • Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci 110:4656–4660

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker BM, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R Packag. version 1.7

  • Blair RB (2001) Birds and butterflies along urban gradients in two ecoregions of the United States: is urbanization creating a homogeneous fauna? In: Lockwood JL, Mckinney ML (eds) Biotic homogenization. Springer, New York, pp 33–56

    Chapter  Google Scholar 

  • Bouseman JK, LaBerge WE (1979) A revision of the bees of the genus Andrena of the Western Hemisphere. Part IX. Subgenus Melandrena. Trans Am Entomol Soc 104:275–389

    Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Mace GM, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc B 275:1441–1448

    Article  PubMed  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Cariveau DP, Winfree R (2015) Causes of variation in wild bee responses to anthropogenic drivers. Curr Opin Insect Sci 10:1–6

    Article  Google Scholar 

  • Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584

    Article  PubMed  Google Scholar 

  • Coelho BWT (2004) A review of the bee genus Augochlorella (Hymenoptera: Halictidae: Augochlorini). Syst Entomol 29:282–323

    Article  Google Scholar 

  • Collen B, Dulvy NK, Gaston KJ, Gärdenfors U, Keith DA, Punt AE, Regan HM, Böhm M, Hedges S, Seddon M, Butchart SHM, Hilton-Taylor C, Hoffmann M, Bachman SP, Akçakaya HR (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biol Lett 12:1424–1442

    Article  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271

    Article  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  PubMed  Google Scholar 

  • Fowler J (2016) Specialist bees of the northeast: host plants and habitat conservation. Northeast Nat 23:305–320

    Article  Google Scholar 

  • Gaston KJ (1996) Species-range-size distributions: patterns, mechanisms and implications. Trends Ecol Evol 11:197–201

    Article  CAS  PubMed  Google Scholar 

  • Gibbs J (2011) Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 1–216

  • Gibbs J, Packer L, Dumesh S, Danforth BN (2013) Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672:1–117

    Article  PubMed  Google Scholar 

  • Godet L, Gaüzere P, Jiguet F, Devictor V (2015) Dissociating several forms of commonness in birds sheds new light on biotic homogenization. Glob Ecol Biogeogr 24:416–426

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Ascher JS, Baldock KCR, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2016) The city as a refuge for insect pollinators. Conserv Biol 1:24–29

    Google Scholar 

  • Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proc R Soc B 279:4969–4976

    Article  PubMed  Google Scholar 

  • Horner-Devine MC, Daily GC, Ehrlich PR, Boggs CL (2003) Countryside biogeography of tropical butterflies. Conserv Biol 17:168–177

    Article  Google Scholar 

  • Hull PM, Darroch SAF, Erwin DH (2015) Rarity in mass extinctions and the future of ecosystems. Nature 528:345–351

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Kühn I, Bakker JP, Kleyer M, Klotz S, Ozinga WA, Poschold P, Thompson K, Thuiller W, Römermann C (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distrib 15:533–546

    Article  Google Scholar 

  • Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  • LaBerge WE (1961) A revision of the bees of the genus Melissodes in North and Central America. Part III (Hymenoptera, Apidae). Univ Kansas Sci Bull 42:283–663

    Article  Google Scholar 

  • LaBerge WE (1967) A revision of the bees of the genus Andrena of the Western Hemisphere. Part I. Callandrena (Hymenoptera: Andrenidae). Bull Univ Nebraska State Museum 7:1–316

    Google Scholar 

  • LaBerge WE (1971) A revision of the bees of the genus Andrena of the Western Hemisphere. Part IV. Scrapteropsis, Xiphandrena and Raphandrena. Trans Am Entomol Soc 97:441–520

    Google Scholar 

  • LaBerge WE (1973) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VI. Subgenus Trachandrena. Trans Am Entomol Soc 99:235–371

    Google Scholar 

  • LaBerge WE (1977) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VIII. Subgenera Thysandrena, Dasyandrena, Psammandrena, Rhacandrena, Euandrena, Oxyandrena. Trans Am Entomol Soc 103:1–143

    Google Scholar 

  • LaBerge WE (1980) A revision of the bees of the genus Andrena of the western hemisphere. Part X. Subgenus Andrena. Trans Am Entomol Soc 106:395–525

    Google Scholar 

  • LaBerge WE (1986) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XI. Minor subgenera and subgeneric key. Trans Am Entomol Soc 111:440–567

    Google Scholar 

  • LaBerge WE (1987) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena, and Melandrena. Trans Am Entomol Soc 112:191–248

    Google Scholar 

  • LaBerge WE (1989) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XIII. Subgenera Simandrena and Taeniandrena. Trans Am Entomol Soc 115:1–56

    Google Scholar 

  • LaBerge WE, Ribble DW (1975) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VII. Subgenus Euandrena. Trans Am Entomol Soc 101:371–446

    Google Scholar 

  • Larkin LL, Andrus R, Droege S (2016) Andrena. In: Discover life. http://www.discoverlife.org/mp/20q?search=Apoidea. Accessed 10 Nov 2016

  • Laverty TM, Harder LD (1988) The bumble bees of eastern Canada. Can Entomol 120:965–967

    Article  Google Scholar 

  • Lockwood JLF, Hoopes MF, Marchetti MP (2006) Invasion ecology. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Matteson K, Ascher J, Langellotto G (2008) Bee richness and abundance in New York city urban gardens. Ann Entomol Soc Am 101:140–150

    Article  Google Scholar 

  • Mayfield MM, Daily GC (2005) Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol Appl 15:423–439

    Article  Google Scholar 

  • McGinley RJ (1986) Studies of Halictinae (Apoidea: Halictidae), I: Revision of New World Lasioglossum Curtis. Smithson Contrib Zool 429:1–294

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–452

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TB (1960) Bees of the Eastern United States: volume I. N C Agric Exp Stn Tech Bull 141:1–538

    Google Scholar 

  • Mitchell TB (1962) Bees of the Eastern United States: volume II. N C Agric Exp Stn Tech Bull 152:1–557

    Google Scholar 

  • Motten A (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Laginha Pinto Correia D, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Nickerson C, Ebel R, Borchers A, Carriazo F (2011) Major uses of land in the United States, 2007. United States Dep Agric Econ Inf Bull

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  • Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester, pp 205–217

    Google Scholar 

  • Rehan SM, Sheffield CS (2011) Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of eastern North America. Zootaxa 2873:35–50

    Article  Google Scholar 

  • Ribble DW (1968) Revisions of two subgenera of Andrena: Micrandrena Ashmead and Derandrena, new subgenus (Hymenoptera: Apoidea). Bull Univ Nebraska State Museum 8:237–394

    Google Scholar 

  • Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Glob Environ Chang 15:23–31

    Article  Google Scholar 

  • Scheper J, Bommarco R, Holzschuh A, Potts SG, Riedinger V, Roberts SPM, Rundlöf M, Smith HG, Steffan-Dewenter I, Wickens JB, Wickens VJ, Kleijn D (2015) Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J Appl Ecol 52:1165–1175

    Article  Google Scholar 

  • Schoener TW (1974) The compression hypothesis and temporal resource partitioning. Proc Natl Acad Sci 71:4169–4172

    Article  CAS  PubMed  Google Scholar 

  • Scott MC (2006) Winners and losers among stream fishes in relation to land use legacies and urban development in the southeastern US. Biol Conserv 127:301–309

    Article  Google Scholar 

  • Stephen WP, Rao S (2005) Unscented Color Traps for Non-Apis Bees (Hymenoptera: Apiformes). Sour J Kansas Entomol Soc 78:373–380

    Article  Google Scholar 

  • ter Braak CJF, Cormont A, Dray SP (2012) Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93:1525–1526

    Article  PubMed  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev Camb Philos Soc 87:661–685

    Article  PubMed  Google Scholar 

  • Umaña MN, Zhang C, Cao M, Lin L, Swenson NG (2015) Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecol Lett 18:1329–1337

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Issues Accuracy Scale, 868

  • Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S (2011) Homogenization patterns of the world’s freshwater fish faunas. Proc Natl Acad Sci 108:18003–18008

    Article  PubMed  Google Scholar 

  • Westrich P (1996) Habitat requirements of central European bees and the problems of parital habitats. Linn Soc Symp Ser 18:1–6

    Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Article  Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  • Zeileis A (2006) Object-oriented computation of sandwich estimators. J Stat Softw 16:1–16

    Article  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sam Droege at the USGS Patuxent Wildlife Research Center in Beltsville, Maryland for identifying 1338 bee specimens of Nomada, and for sharing his data (3500 of the 42,552 specimen records used for defining bee species’ phenology). We also thank members of the Winfree lab for invaluable comments and support throughout this study’s planning, analysis and writing, and helpful comments from the associate editor and two anonymous peer reviewers that improved the final manuscript. This work was supported by a federal Graduate Assistance in Areas of National Need (GAANN) fellowship awarded to TH through the Rutgers University Ecology & Evolution Graduate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, T., Gibbs, J. & Winfree, R. Anthropogenic landscapes support fewer rare bee species. Landscape Ecol 34, 967–978 (2019). https://doi.org/10.1007/s10980-017-0592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0592-x

Keywords

Navigation