Anthropogenic landscapes support fewer rare bee species

Abstract

Context

The response of rare species to human land use is poorly known because rarity is difficult to study; however, it is also important because rare species compose most of biodiversity, and are disproportionately vulnerable. Regional bee pollinator faunas have not been assessed for rarity outside of Europe. Therefore, we do not know to what extent anthropogenic landscapes support rare North American bee biodiversity.

Objectives

We ask how richness and abundance of bee species respond to land use, within quartiles of species defined by their numerical, phenological, and geographical rarity.

Methods

We conducted a field study to sample bee communities in forested, agricultural, and urban landscapes replicated across a large spatial extent of the northeastern United States. We used large independent data sets to classify observed bee species according to three forms of rarity: their numerical rarity (low regional frequency in a museum-based data set), phenological rarity (short flight season length) and geographical rarity (small range size).

Results

For all three forms of rarity, we found half as many rare bee species in agricultural landscapes compared to forest. We found half as many phenologically rare species in urban landscapes. Bees that had both shorter flight seasons and smaller range sizes were between one-third and one-half as rich in both types of anthropogenic landscapes, regardless of regional frequency.

Conclusions

Although a minority of rare bee species were found in anthropogenic landscapes, our overall conclusion is that the native vegetation of our region, forest, is critical for supporting rare bee biodiversity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arduser M (2016) Key to Osmia females known from eastern North America (east of the Great Plains). https://www.pwrc.usgs.gov/nativebees/Keys.html Accessed 1 Oct 2016

  2. Ascher JS (2006–2017) AMNH BEES species occurrence database. http://www.discoverlife.org/mp/20m?kind=AMNH_BEES. Accessed 1 Nov 2017

  3. Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Pott SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282:20142849

  4. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci 110:4656–4660

    Article  PubMed  Google Scholar 

  5. Bates D, Maechler M, Bolker BM, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R Packag. version 1.7

  6. Blair RB (2001) Birds and butterflies along urban gradients in two ecoregions of the United States: is urbanization creating a homogeneous fauna? In: Lockwood JL, Mckinney ML (eds) Biotic homogenization. Springer, New York, pp 33–56

    Google Scholar 

  7. Bouseman JK, LaBerge WE (1979) A revision of the bees of the genus Andrena of the Western Hemisphere. Part IX. Subgenus Melandrena. Trans Am Entomol Soc 104:275–389

    Google Scholar 

  8. Cardillo M, Mace GM, Gittleman JL, Mace GM, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc B 275:1441–1448

    Article  PubMed  Google Scholar 

  9. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  10. Cariveau DP, Winfree R (2015) Causes of variation in wild bee responses to anthropogenic drivers. Curr Opin Insect Sci 10:1–6

    Article  Google Scholar 

  11. Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584

    Article  PubMed  Google Scholar 

  12. Coelho BWT (2004) A review of the bee genus Augochlorella (Hymenoptera: Halictidae: Augochlorini). Syst Entomol 29:282–323

    Article  Google Scholar 

  13. Collen B, Dulvy NK, Gaston KJ, Gärdenfors U, Keith DA, Punt AE, Regan HM, Böhm M, Hedges S, Seddon M, Butchart SHM, Hilton-Taylor C, Hoffmann M, Bachman SP, Akçakaya HR (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biol Lett 12:1424–1442

    Article  Google Scholar 

  14. Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271

    Article  Google Scholar 

  15. Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  PubMed  Google Scholar 

  16. Fowler J (2016) Specialist bees of the northeast: host plants and habitat conservation. Northeast Nat 23:305–320

    Article  Google Scholar 

  17. Gaston KJ (1996) Species-range-size distributions: patterns, mechanisms and implications. Trends Ecol Evol 11:197–201

    Article  CAS  PubMed  Google Scholar 

  18. Gibbs J (2011) Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 1–216

  19. Gibbs J, Packer L, Dumesh S, Danforth BN (2013) Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672:1–117

    Article  PubMed  Google Scholar 

  20. Godet L, Gaüzere P, Jiguet F, Devictor V (2015) Dissociating several forms of commonness in birds sheds new light on biotic homogenization. Glob Ecol Biogeogr 24:416–426

    Article  Google Scholar 

  21. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  22. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  23. Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Ascher JS, Baldock KCR, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2016) The city as a refuge for insect pollinators. Conserv Biol 1:24–29

    Google Scholar 

  24. Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proc R Soc B 279:4969–4976

    Article  PubMed  Google Scholar 

  25. Horner-Devine MC, Daily GC, Ehrlich PR, Boggs CL (2003) Countryside biogeography of tropical butterflies. Conserv Biol 17:168–177

    Article  Google Scholar 

  26. Hull PM, Darroch SAF, Erwin DH (2015) Rarity in mass extinctions and the future of ecosystems. Nature 528:345–351

    Article  CAS  PubMed  Google Scholar 

  27. Knapp S, Kühn I, Bakker JP, Kleyer M, Klotz S, Ozinga WA, Poschold P, Thompson K, Thuiller W, Römermann C (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distrib 15:533–546

    Article  Google Scholar 

  28. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  29. LaBerge WE (1961) A revision of the bees of the genus Melissodes in North and Central America. Part III (Hymenoptera, Apidae). Univ Kansas Sci Bull 42:283–663

    Article  Google Scholar 

  30. LaBerge WE (1967) A revision of the bees of the genus Andrena of the Western Hemisphere. Part I. Callandrena (Hymenoptera: Andrenidae). Bull Univ Nebraska State Museum 7:1–316

    Google Scholar 

  31. LaBerge WE (1971) A revision of the bees of the genus Andrena of the Western Hemisphere. Part IV. Scrapteropsis, Xiphandrena and Raphandrena. Trans Am Entomol Soc 97:441–520

    Google Scholar 

  32. LaBerge WE (1973) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VI. Subgenus Trachandrena. Trans Am Entomol Soc 99:235–371

    Google Scholar 

  33. LaBerge WE (1977) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VIII. Subgenera Thysandrena, Dasyandrena, Psammandrena, Rhacandrena, Euandrena, Oxyandrena. Trans Am Entomol Soc 103:1–143

    Google Scholar 

  34. LaBerge WE (1980) A revision of the bees of the genus Andrena of the western hemisphere. Part X. Subgenus Andrena. Trans Am Entomol Soc 106:395–525

    Google Scholar 

  35. LaBerge WE (1986) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XI. Minor subgenera and subgeneric key. Trans Am Entomol Soc 111:440–567

    Google Scholar 

  36. LaBerge WE (1987) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena, and Melandrena. Trans Am Entomol Soc 112:191–248

    Google Scholar 

  37. LaBerge WE (1989) A revision of the bees of the genus Andrena of the Western Hemisphere. Part XIII. Subgenera Simandrena and Taeniandrena. Trans Am Entomol Soc 115:1–56

    Google Scholar 

  38. LaBerge WE, Ribble DW (1975) A revision of the bees of the genus Andrena of the Western Hemisphere. Part VII. Subgenus Euandrena. Trans Am Entomol Soc 101:371–446

    Google Scholar 

  39. Larkin LL, Andrus R, Droege S (2016) Andrena. In: Discover life. http://www.discoverlife.org/mp/20q?search=Apoidea. Accessed 10 Nov 2016

  40. Laverty TM, Harder LD (1988) The bumble bees of eastern Canada. Can Entomol 120:965–967

    Article  Google Scholar 

  41. Lockwood JLF, Hoopes MF, Marchetti MP (2006) Invasion ecology. Wiley-Blackwell, Hoboken

    Google Scholar 

  42. Matteson K, Ascher J, Langellotto G (2008) Bee richness and abundance in New York city urban gardens. Ann Entomol Soc Am 101:140–150

    Article  Google Scholar 

  43. Mayfield MM, Daily GC (2005) Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol Appl 15:423–439

    Article  Google Scholar 

  44. McGinley RJ (1986) Studies of Halictinae (Apoidea: Halictidae), I: Revision of New World Lasioglossum Curtis. Smithson Contrib Zool 429:1–294

    Article  Google Scholar 

  45. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–452

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell TB (1960) Bees of the Eastern United States: volume I. N C Agric Exp Stn Tech Bull 141:1–538

    Google Scholar 

  47. Mitchell TB (1962) Bees of the Eastern United States: volume II. N C Agric Exp Stn Tech Bull 152:1–557

    Google Scholar 

  48. Motten A (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42

    Article  Google Scholar 

  49. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Laginha Pinto Correia D, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  50. Nickerson C, Ebel R, Borchers A, Carriazo F (2011) Major uses of land in the United States, 2007. United States Dep Agric Econ Inf Bull

  51. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  52. Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  53. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  54. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  55. Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283

    Article  Google Scholar 

  56. Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester, pp 205–217

    Google Scholar 

  57. Rehan SM, Sheffield CS (2011) Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of eastern North America. Zootaxa 2873:35–50

    Article  Google Scholar 

  58. Ribble DW (1968) Revisions of two subgenera of Andrena: Micrandrena Ashmead and Derandrena, new subgenus (Hymenoptera: Apoidea). Bull Univ Nebraska State Museum 8:237–394

    Google Scholar 

  59. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Glob Environ Chang 15:23–31

    Article  Google Scholar 

  60. Scheper J, Bommarco R, Holzschuh A, Potts SG, Riedinger V, Roberts SPM, Rundlöf M, Smith HG, Steffan-Dewenter I, Wickens JB, Wickens VJ, Kleijn D (2015) Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J Appl Ecol 52:1165–1175

    Article  Google Scholar 

  61. Schoener TW (1974) The compression hypothesis and temporal resource partitioning. Proc Natl Acad Sci 71:4169–4172

    Article  CAS  PubMed  Google Scholar 

  62. Scott MC (2006) Winners and losers among stream fishes in relation to land use legacies and urban development in the southeastern US. Biol Conserv 127:301–309

    Article  Google Scholar 

  63. Stephen WP, Rao S (2005) Unscented Color Traps for Non-Apis Bees (Hymenoptera: Apiformes). Sour J Kansas Entomol Soc 78:373–380

    Article  Google Scholar 

  64. ter Braak CJF, Cormont A, Dray SP (2012) Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93:1525–1526

    Article  PubMed  Google Scholar 

  65. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev Camb Philos Soc 87:661–685

    Article  PubMed  Google Scholar 

  66. Umaña MN, Zhang C, Cao M, Lin L, Swenson NG (2015) Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecol Lett 18:1329–1337

    Article  PubMed  Google Scholar 

  67. Venables WN, Ripley BD (2002) Modern applied statistics with S. Issues Accuracy Scale, 868

  68. Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S (2011) Homogenization patterns of the world’s freshwater fish faunas. Proc Natl Acad Sci 108:18003–18008

    Article  PubMed  Google Scholar 

  69. Westrich P (1996) Habitat requirements of central European bees and the problems of parital habitats. Linn Soc Symp Ser 18:1–6

    Google Scholar 

  70. Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Article  Google Scholar 

  71. Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  72. Zeileis A (2006) Object-oriented computation of sandwich estimators. J Stat Softw 16:1–16

    Article  Google Scholar 

  73. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sam Droege at the USGS Patuxent Wildlife Research Center in Beltsville, Maryland for identifying 1338 bee specimens of Nomada, and for sharing his data (3500 of the 42,552 specimen records used for defining bee species’ phenology). We also thank members of the Winfree lab for invaluable comments and support throughout this study’s planning, analysis and writing, and helpful comments from the associate editor and two anonymous peer reviewers that improved the final manuscript. This work was supported by a federal Graduate Assistance in Areas of National Need (GAANN) fellowship awarded to TH through the Rutgers University Ecology & Evolution Graduate Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tina Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3127 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, T., Gibbs, J. & Winfree, R. Anthropogenic landscapes support fewer rare bee species. Landscape Ecol 34, 967–978 (2019). https://doi.org/10.1007/s10980-017-0592-x

Download citation

Keywords

  • Rarity
  • Commonness
  • Pollinator
  • Land use
  • Urban
  • Phenology
  • Apoidea