Landscape Ecology

, Volume 33, Issue 2, pp 213–224 | Cite as

Anthropogenic disturbances strengthened tree community-environment relationships at the temperate-boreal interface

  • Victor Danneyrolles
  • Dominique Arseneault
  • Yves Bergeron
Research Article

Abstract

Context

Knowledge of how environmental gradients generate changes in community composition across forest landscapes (β-diversity) represents a critical issue in the era of global change, which exerts especially powerful impacts by shifting disturbance regimes.

Objectives

We analyzed the response of tree communities to increased disturbance rates that were linked to European settlement at the temperate-boreal interface of eastern Canada. We tested whether disturbance has led to spatial homogenization or heterogenization, and to decoupling or strengthening of community-environment relationships.

Methods

We used a reconstruction of pre-industrial tree communities based on historical land survey records (1854–1935), together with modern data, to assess changes in tree β-diversity patterns. Then, β-diversity was partitioned into fractions explained by spatial (dbMEM) and environmental variables (latitude, elevation, slope, drainage and surface deposits) in order to assess changes in spatial structures and community-environment relationships.

Results

In pre-industrial times, environmental variables explained only a small proportion of β-diversity since dominant taxa were present across the range of environmental gradients, whereas habitat specialists were very rare. Between pre-industrial and modern times, our analysis highlights an increase in β-diversity and the proportion of β-diversity that was explained by environmental variables. Increased disturbance rates have favored early-successional habitat specialist taxa and reduced the habitat breadth of pre-industrial generalists, thereby increasing the strength of community-environment relationships.

Conclusions

Our results support that disturbance can alter the strength of community-environment relationships and also suggest that functional traits of species within the regional pool could predict whether or not disturbance alters such relationships.

Keywords

Community assembly Environmental niche Environmental filtering Land-use changes Meta-community 

Notes

Acknowledgements

We thank Sébastien Dupuis for his help in constructing the geo-referenced database from the survey records. We also thank Iván Jiménez for having very kindly shared some of his R codes, Lili Perreault and William F.J. Parsons for carefully editing the manuscript. We acknowledge Mark Vellend, the associate editor and two anonymous reviewers for their constructive feedback on early versions of the manuscript. This project was financially supported by the Natural Science and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec Nature et Technologies (FRQNT), the forest product company TEMBEC (Témiscaming, QC), the Conference Régionale des Élus de l’Abitibi-Témiscamingue (CREAT) and the Ministère des Forêts, Faune et Parcs du Québec (MFFP).

Supplementary material

10980_2017_591_MOESM1_ESM.docx (736 kb)
Supplementary material 1 (DOCX 735 kb)

References

  1. Abrams MD (2001) Eastern white pine versatility in the presettlement forest. BioScience 51:967.  https://doi.org/10.1641/0006-3568(2001)051[0967:EWPVIT]2.0.CO;2
  2. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28CrossRefPubMedGoogle Scholar
  3. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefPubMedGoogle Scholar
  4. Barras N, Kellman M (1998) The supply of regeneration micro-sites and segregation of tree species in a hardwood/boreal forest transition zone. J Biogeogr 25:871–881CrossRefGoogle Scholar
  5. Bastow Wilson J (2012) Species presence/absence sometimes represents a plant community as well as species abundances do, or better. J Veg Sci 23:1013–1023CrossRefGoogle Scholar
  6. Berger JP (2008) Norme de stratification écoforestière. Quatrième inventaire écoforestier. Ministère des Ressources naturelles et de la Faune du Québec, Québec, CanadaGoogle Scholar
  7. Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology 81:1500–1516CrossRefGoogle Scholar
  8. Bergeron Y, Archambault S (1993) Decreasing frequency of forest fires in the southern boreal zone of Quebec and its relation to global warming since the end of the “Little Ice Age”. Holocene 3:255–259CrossRefGoogle Scholar
  9. Bergeron Y, Charron D (1994) Postfire stand dynamics in a southern boreal forest (Québec): a dendroecological approach. Ecoscience 1:173–184CrossRefGoogle Scholar
  10. Bergeron Y, Cyr D, Drever CR, Flannigan M, Gauthier S, Kneeshaw D, Lauzon È, Leduc A, Goff HL, Lesieur D, Logan K (2006) Past, current, and future fire frequencies in Quebec’s commercial forests: implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Can J For Res 36:2737–2744CrossRefGoogle Scholar
  11. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefPubMedGoogle Scholar
  12. Bouchard M, Kneeshaw D, Bergeron Y (2006a) Forest dynamics after successive spruce budworm outbreaks in mixedwood forests. Ecology 87:2319–2329CrossRefPubMedGoogle Scholar
  13. Bouchard M, Kneeshaw D, Bergeron Y (2006b) Tree recruitment pulses and long-term species coexistence in mixed forests of western Québec. Ecoscience 13:82–88CrossRefGoogle Scholar
  14. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brown JL (1981) Les forêts du Témiscamingue, Québec: écologie et photo-interprétation. Laboratoire d’écologie forestière, Université Laval, Ville de QuébecGoogle Scholar
  16. Carreño-Rocabado G, Peña-Claros M, Bongers F, Alarcón A, Licona J-C, Poorter L (2012) Effects of disturbance intensity on species and functional diversity in a tropical forest. J Ecol 100:1453–1463CrossRefGoogle Scholar
  17. Catano CP, Dickson TL, Myers JA (2017) Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta-diversity: a meta-analysis. Ecol Lett 20:347–356CrossRefPubMedGoogle Scholar
  18. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans Royal Soci B 366:2351–2363CrossRefGoogle Scholar
  20. Clifford MJ, Booth RK (2015) Late-Holocene drought and fire drove a widespread change in forest community composition in eastern North America. Holocene 25:1102–1110CrossRefGoogle Scholar
  21. Cooper DJ, Andersen DC, Chimner RA (2003) Multiple pathways for woody plant establishment on floodplains at local to regional scales. J Ecol 91:182–196CrossRefGoogle Scholar
  22. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics: meta-analysis of metacommunities. Ecol Lett 8:1175–1182CrossRefPubMedGoogle Scholar
  23. Couture YH (1983) Les Algonquins. Editions Hyperborée, Val d’Or, Québec, CanadaGoogle Scholar
  24. Cyr D, Gauthier S, Bergeron Y (2012) The influence of landscape-level heterogeneity in fire frequency on canopy composition in the boreal forest of eastern Canada. J Veg Sci 23:140–150CrossRefGoogle Scholar
  25. Danneyrolles V, Arseneault D, Bergeron Y (2016a) Pre-industrial landscape composition patterns and post-industrial changes at the temperate-boreal forest interface in western Quebec, Canada. J Veg Sci 27:470–481CrossRefGoogle Scholar
  26. Danneyrolles V, Arseneault D, Bergeron Y (2016b) Long-term compositional changes following partial disturbance revealed by the re-survey of logging concession limits in the northern temperate forest of eastern Canada. Can J For Res 46:943–949CrossRefGoogle Scholar
  27. Danneyrolles V, Dupuis S, Arseneault D, Terrail R, Leroyer M, de Römer A, Fortin G, Boucher Y, Ruel J-C (2017) Eastern white cedar long-term dynamics in eastern Canada: implications for restoration in the context of ecosystem-based management. For Ecol Manag 400:502–510CrossRefGoogle Scholar
  28. Dray S, Pélissier R, Couteron P, Fortin M-J, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour A-B, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275CrossRefGoogle Scholar
  29. Drever CR, Messier C, Bergeron Y, Doyon F (2006) Fire and canopy species composition in the Great Lakes-St. Lawrence forest of Témiscamingue, Québec. For Ecol Manag 231:27–37CrossRefGoogle Scholar
  30. Dupuis S, Arseneault D, Sirois L (2011) Change from pre-settlement to present-day forest composition reconstructed from early land survey records in eastern Québec, Canada. J Veg Sci 22:564–575CrossRefGoogle Scholar
  31. Flannigan M, Stocks B, Turetsky M, Wotton M (2009) Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Change Biol 15:549–560CrossRefGoogle Scholar
  32. Foley JA (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  33. Fraser DA (1954) Ecological studies of forest trees at Chalk River, Ontario, Canada. I. Tree species in relation to soil moisture sites. Ecology 35:406–414CrossRefGoogle Scholar
  34. Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770CrossRefPubMedGoogle Scholar
  35. Gennaretti F, Arseneault D, Bégin Y (2014a) Millennial disturbance-driven forest stand dynamics in the Eastern Canadian taiga reconstructed from subfossil logs. J Ecol 102:1612–1622CrossRefGoogle Scholar
  36. Gennaretti F, Arseneault D, Nicault A, Perreault L, Begin Y (2014b) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci USA 111:10077–10082CrossRefPubMedPubMedCentralGoogle Scholar
  37. Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev 87:111–127CrossRefPubMedGoogle Scholar
  38. Grenier DJ, Bergeron Y, Kneeshaw D, Gauthier S (2005) Fire frequency for the transitional mixedwood forest of Timiskaming, Quebec, Canada. Can J For Res 35:656–666CrossRefGoogle Scholar
  39. Hanberry BB, Dey DC, He HS (2012a) Regime shifts and weakened environmental gradients in open oak and pine ecosystems. PLoS ONE 7:e41337CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hanberry BB, Palik BJ, He HS (2012b) Comparison of historical and current forest surveys for detection of homogenization and mesophication of Minnesota forests. Landscape Ecol 27:1495–1512CrossRefGoogle Scholar
  41. Harvey BJ, Holzman BA (2014) Divergent successional pathways of stand development following fire in a California closed-cone pine forest. J Veg Sci 25:88–99CrossRefGoogle Scholar
  42. Haynes KJ, Allstadt AJ, Klimetzek D (2014) Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Glob Change Biol 20:2004–2018CrossRefGoogle Scholar
  43. Hogan JA, Zimmerman JK, Uriarte M, Turner BL, Thompson J (2016) Land-use history augments environment-plant community relationship strength in a Puerto Rican wet forest. J Ecol 104:1466–1477CrossRefGoogle Scholar
  44. Lefort P, Gauthier S, Bergeron Y (2003) The influence of fire weather and land use on the fire Activity of the Lake Abitibi area, eastern Canada. For Sci 49:509–521Google Scholar
  45. Legendre P, Borcard D, Blanchet FG, Dray S (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109. http://R-Forge.R-project.org/projects/sedar/
  46. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450CrossRefGoogle Scholar
  47. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963CrossRefPubMedGoogle Scholar
  48. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  49. Legendre P, Mi X, Ren H, Ma K, Yu M, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674CrossRefPubMedGoogle Scholar
  50. Lienert A (1966) The story of the (Kipawa) Noranda woods division. Canadian Paper International, Rouyn-NorandaGoogle Scholar
  51. MacHattie LB, McCormack RJ (1961) Forest microclimate: a topographic study in Ontario. J Ecol 49:301–323CrossRefGoogle Scholar
  52. Myers JA, Chase JM, Crandall RM, Jiménez I (2015) Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. J Ecol 103:1291–1299CrossRefGoogle Scholar
  53. Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16:151–157CrossRefPubMedGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan
  55. Pausas JG, Verdú M (2008) Fire reduces morphospace occupation in plant communities. Ecology 89:2181–2186CrossRefPubMedGoogle Scholar
  56. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625CrossRefPubMedGoogle Scholar
  57. Questad EJ, Foster BL (2008) Coexistence through spatio-temporal heterogeneity and species sorting in grassland plant communities. Ecol Lett 11:717–726CrossRefPubMedGoogle Scholar
  58. Riopel M (2002) Le Témiscamingue: son histoire et ses habitants. Fides, Saint-LaurentGoogle Scholar
  59. Robitaille A, Saucier J-P (1998) Paysages régionaux du Québec méridional. Gouvernement du Québec, Ministère des ressources naturellesGoogle Scholar
  60. Rowe JS (1972) Forest regions of Canada. Canadian Forestry Service Publication No. 1300. Fisheries and Environment Canada, Canadian Forest Service, OttawaGoogle Scholar
  61. Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT (2007) Homogenization of northern U.S. Great Lakes forests due to land use. Landscape Ecol 22:1089–1103CrossRefGoogle Scholar
  62. Scull P, Richardson JL (2007) A method to use ranked timber observations to perform forest composition reconstructions from land survey data. Am Midl Nat 158:446–460CrossRefGoogle Scholar
  63. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80CrossRefPubMedGoogle Scholar
  64. Terrail R, Arseneault D, Fortin M-J, Dupuis S, Boucher Y (2014) An early forest inventory indicates high accuracy of forest composition data in pre-settlement land survey records. J Veg Sci 25:691–702CrossRefGoogle Scholar
  65. Thompson JR, Carpenter DN, Cogbill CV, Foster DR (2013) Four centuries of change in northeastern United States forests. PLoS ONE 8:e72540CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206CrossRefPubMedGoogle Scholar
  67. Vellend M (2016) The theory of ecological communities. Princeton University Press, PrincetonCrossRefGoogle Scholar
  68. Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, Macdonald AAM, Maclean JE, Myers-Smith IH, Norris AR, Xue X (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430CrossRefGoogle Scholar
  69. Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573CrossRefGoogle Scholar
  70. Vincent J-S, Hardy L (1977) L’évolution et l’extension des lacs glaciaires Barlow et Ojibway en territoire québécois. Géog Phys Quatern 31:357–372Google Scholar
  71. Wainwright CE, Staples TL, Charles LS, Flanagan TC, Lai HR, Loy X, Reynolds VA, Mayfield MM (2017) Links between community ecology theory and ecological restoration are on the rise. J Appl Ecol.  https://doi.org/10.1111/1365-2664.12975 Google Scholar
  72. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Victor Danneyrolles
    • 1
  • Dominique Arseneault
    • 2
  • Yves Bergeron
    • 1
  1. 1.Centre d’étude de la forêt (CEF) and Chaire industrielle CRSNG-UQAT-UQAM en Aménagement Forestier DurableUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  2. 2.Groupe BOREAS, Centre d’étude de la forêt (CEF) and Chaire de Recherche sur la Forêt HabitéeUniversité du Québec à RimouskiRimouskiCanada

Personalised recommendations