Skip to main content

Predation risk across a dynamic landscape: effects of anthropogenic land use, natural landscape features, and prey distribution

Abstract

Purpose

Human-mediated landscape changes alter habitat configuration, which strongly structures animal distributions and interspecific interactions. The effects of anthropogenic disturbance on predator–prey relationships are fundamental to ecology, yet less well understood. We determined where predation events occurred for fawn and adult female mule deer from 2008 to 2014 in critical winter range with extensive energy development. We investigated the relationship between predation sites, energy infrastructure, and natural landscape features across contiguous areas experiencing different degrees of energy extraction during periods of high and low intensity development.

Methods

We contrast spatial correlates of 286 mortality locations with random landscape locations and mule deer distribution estimated from 350,000 GPS locations. We estimated predation risk with resource selection functions and latent selection difference functions.

Results

Relative to the distribution of mule deer, predation risk was lower closer to pipelines and well pads, but higher closer to roads. Predation sites occurred more than expected relative to availability and deer distribution in deeper snow and non-forested habitats. Anthropogenic features had a greater influence on predation sites during the period of low activity than high activity, and natural landscape characteristics had weaker effects relative to anthropogenic features throughout the study. Though canids accounted for the majority of predation events, felids exhibited stronger landscape associations, driving the observed spatial patterns in predation risk to mule deer.

Conclusions

The emergence of varied interactions between predation and landscape features across contexts and years highlights the complexity of interspecific interactions in highly modified landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aldridge CL, Boyce MS (2007) Linking occurrence and fitness to persistence: a habitat-based approach for Greater Sage-Grouse. Ecol Appl 17:508–526

    Article  PubMed  Google Scholar 

  • Anderson CR Jr, Lindzey FG (2003) Estimating cougar predation rates from GPS location clusters. J Wildl Manag 67:307–316

    Article  Google Scholar 

  • Bartmann RM, White GC, Carpenter LH (1992) Compensatory mortality in a Colorado mule deer population. Wildl Monogr 121:3–39

    Google Scholar 

  • Berger J (2007) Fear, human shields and the redistribution of prey and predators in protected areas. Biol Lett 3:620–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop CJ, Unsworth JW, Garton EO (2005) Mule deer survival among adjacent populations in southwest Idaho. J Wildl Manag 69:311–321

    Article  Google Scholar 

  • Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276

    Article  Google Scholar 

  • Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH (2014) Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ Sci Technol 48:11034–11047

    CAS  Article  PubMed  Google Scholar 

  • Burton AC, Sam MK, Balangtaa C, Bashares JS (2012) Hierarchical multi-species modeling of carnivore responses to hunting, habitat and prey in a West African protected area. PLoS ONE 7:e38007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295:2273–2276

    CAS  Article  PubMed  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    CAS  Article  PubMed  Google Scholar 

  • Courbin N, Fortin D, Dussault C, Fargeot V, Courtois R (2013) Multi-trophic resource selection function enlightens the behavioural game between wolves and their prey. J Anim Ecol 82:1062–1071

    Article  PubMed  Google Scholar 

  • Crête M, Larivière S (2003) Estimating the costs of locomotion in snow for coyotes. Can J Zool 81:1808–1814

    Article  Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Crooks KR, Burdett CL, Theobald DM, Rondinini C, Boitani L (2011) Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos Trans R Soc B 366:2642–2651

    Article  Google Scholar 

  • Dickie M, Serrouya R, McNay RS, Boutin S (2017) Faster and farther: wolf movement on linear features and implications for hunting behavior. J Appl Ecol 54:253–263

    Article  Google Scholar 

  • Dyer SJ, O’Neill JP, Wasel SM, Boutin S (2002) Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can J Zool 80:839–845

    Article  Google Scholar 

  • Elbroch LM, Lendrum PE, Newby J, Quigley H, Craighead D (2013) Seasonal foraging ecology of non-migratory cougars in a system with migrating prey. PLoS ONE 8:e83375

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson ME, Found-Jackson C, Boyce MS (2014) Using latent selection difference to model persistence in a declining population. PLoS ONE 9:e98126

    Article  PubMed  PubMed Central  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science 333:301–306

    CAS  Article  PubMed  Google Scholar 

  • Ford AT, Goheen JR, Otieno TO, Bidner L, Isbell LA, Palmer TM, Ward D, Woodroffe R, Pringle RM (2014) Large carnivores make savanna tree communities less thorny. Science 346:346–349

    CAS  Article  PubMed  Google Scholar 

  • Frid A, Dill L (2002) Human-caused disturbance as a form of predation risk. Conserv Ecol 6:11

    Article  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Book  Google Scholar 

  • Gelman A, Rubin DB (1992) A single series from the Gibbs sampler provides a false sense of security. Bayesian Stat 4:625–631

    Google Scholar 

  • Hawkins SJ, Charpentier RR, Schenk CJ, Leathers-Miller HM, Klett TR, Brownfield ME, Finn TM, Gaswirth SB, Marra KR, Le PA, Mercier TJ, Pitman JK, Tennyson ME (2016) Assessment of continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale of the Piceance Basin, Uinta-Piceance Province, Colorado and Utah, 2016: US Geological Survey Fact Sheet 2016. http://dx.doi.org/103133/fs20163030

  • Hebblewhite M (2005) Predation interacts with the North Pacific Oscillation (NPO) to influence western North American elk population dynamics. J Anim Ecol 74:226–233

    Article  Google Scholar 

  • Hebblewhite M, Merrill EH, McDonald TL (2005) Spatial decomposition of predation risk using resource selection functions: an example in a wolf–elk predator–prey system. Oikos 111:101–111

    Article  Google Scholar 

  • Heisey DM, Patterson BR (2006) A review of methods to estimate cause-specific mortality in presence of competing risks. J Wildl Manag 70:1544–1555

    Article  Google Scholar 

  • Hobbs NT, Hooten MB (2015) Bayesian models: a statistical primer for ecologists. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Hurley MA, Unsworth JW, Zager P, Hebblewhite M, Garton EO, Montgomery DM, Skalski JR, Maycock CL (2011) Demographic response of mule deer to experimental reduction of coyotes and mountain lions in southeastern Idaho. Wildl Monogr 178:1–33

    Article  Google Scholar 

  • Husseman JS, Murray DL, Power G, Mack C, Wenger CR, Quigley H (2003) Assessing differential prey selection patterns between two sympatric large carnivores. Oikos 101:591–601

    Article  Google Scholar 

  • Johnson HE, Sushinsky JR, Holland A, Bergman EJ, Balzer T, Garner J, Reed SE (2017) Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob Chang Biol 23:578–591

    Article  PubMed  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci USA 101:4854–4858

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kertson BN, Spencer RD, Marzluff JM, Hepinstall-Cymerman J, Grue CE (2011) Cougar space use and movements in the wildland–urban landscape of western Washington. Ecol Appl 21:2866–2881

    Article  Google Scholar 

  • Knopff AA, Knopff KH, Boyce MS, St. Clair CC (2014) Flexible habitat selection by cougars in response to anthropogenic development. Biol Conserv 178:136–145

    Article  Google Scholar 

  • Krausman PR, Hervert JJ, Ordway LL (1985) Capturing deer and mountain sheep with a netgun. Wildl Soc B 13:71–73

    Google Scholar 

  • Laberee K, Nelson TA, Stewart BP, McKay T, Stenhouse GB (2014) Oil and gas infrastructure and the spatial pattern of grizzly bear habitat selection in Alberta, Canada. Can Geogr 58:79–94

    Article  Google Scholar 

  • Larsen S, Ormerod SJ (2014) Anthropogenic modification disrupts species co-occurrence in stream invertebrates. Glob Chang Biol 20:51–60

    Article  PubMed  Google Scholar 

  • Laundré JW, Loxterman J (2007) Impact of edge habitat on summer home range size in female pumas. Am Midl Nat 157:221–229

    Article  Google Scholar 

  • Lazaridis A (2007) A note regarding the condition number: the case of spurious and latent multicollinearity. Qual Quant 41:123–135

    Article  Google Scholar 

  • Leblond M, Dussault C, Ouellet J-P (2013) Impacts of human disturbance on large prey species: do behavioral reactions translate to fitness consequences? PLoS ONE 8:e73695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lendrum PE, Anderson CR Jr, Long RA, Kie JG, Bowyer RT (2012) Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3(9):1–19

    Article  Google Scholar 

  • Lendrum PE, Anderson CR Jr, Monteith KL, Jenks, JA, Bowyer RT (2013) Migrating mule deer: effects of anthropogenically altered landscapes. PLoS ONE 8:e64548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lendrum PE, Anderson CR Jr, Monteith KL, Jenks, JA, Bowyer RT (2014) Relating the movement of a rapidly migrating ungulate to spatiotemporal patterns of forage quality. Mammal Biol 79:369–375

    Article  Google Scholar 

  • Lendrum PE, Crooks KR, Wittemyer G (2017) Changes in circadian activity patterns of a wildlife community post high-intensity energy development. J Mammal 98:1265–1271

    Google Scholar 

  • Leu M, Hanser SE, Knick ST (2008) The human footprint in the west: a large-scale analysis of anthropogenic impacts. Ecol Appl 18:1119–1139

    Article  PubMed  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals, statistical design and analysis for field studies, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  • McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J (2009) Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4:e6802

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll RJ, Redilla KM, Mudumba T, Muneza AB, Gray SM, Abade L, Hayward MW, Millspaugh JJ, Montgomery RA (2017) The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J Anim Ecol 86:749–765

    Article  PubMed  Google Scholar 

  • Murray DL, Boutin S (1991) The influence of snow on lynx and coyote movements: does morphology affect behavior? Oecologia 88:463–469

    Article  PubMed  Google Scholar 

  • Northrup JM, Anderson CR Jr, Wittemyer G (2015) Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer. Glob Chang Biol 21:3961–3970

    Article  PubMed  Google Scholar 

  • Northrup JM, Anderson CR Jr, Wittemyer G (2016) Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers Distrib 22:547–557

    Article  Google Scholar 

  • Northrup JM, Wittemyer G (2013) Characterizing the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol Lett 16:112–125

    Article  PubMed  Google Scholar 

  • Northrup JM, Anderson CR Jr, Gerber BD, Wittemyer G (In revision) Behavioral plasticity buffers mule deer from demographic impacts of energy development. Wildlife Monogr

  • Parker KL, Robbins CT, Hanley TA (1984) Energy expenditures for locomotion by mule deer and elk. J Wildl Manag 48:474–488

    Article  Google Scholar 

  • Preisser EL, Orrock JL, Schmitz OJ (2007) Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88:2744–2751

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environement for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:123–148

    Article  Google Scholar 

  • Rogala JK, Hebblewhite M, Whittington J, White CA, Coleshill J, Musiani M (2011) Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol Soc 16:16

    Article  Google Scholar 

  • Sawyer H, Nielson RM, Lindzey FG, McDonald LL (2006) Winter habitat selection of mule deer before and during development of a natural gas field. J Wildlife Manag 70:396–403

    Article  Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues AS, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE Jr, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GA, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RK, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WR, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE 3rd, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, De Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié JC, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

  • Stonehouse FK, Anderson CR Jr, Peterson ME, Collins DR (2016) Approaches to field investigations of cause–specific mortality in mule deer. Technical Publication No 48, Colorado Parks and Wildlife, Fort Collins, CO, USA

  • Telfer ES, Kelsall JP (1984) Adaptation of some large North American mammals for survival in snow. Ecology 65:1828–1834

    Article  Google Scholar 

  • Unsworth JW, Pac DF, White GC, Bartmann RM (1999) Mule deer survival in Colorado, Idaho, and Montana. J Wildl Manag 63:315–326

    Article  Google Scholar 

  • Whittington J, Hebblewhite M, DeCesare NJ, Neufeld L, Bradley M, Wilmshurst J, Musiani M (2011) Caribou encounters with wolves increase near roads and trails: a time-to-event approach. J Appl Ecol 48:1535–1542

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

Download references

Acknowledgements

Funding and support came from Federal Aid in Wildlife Restoration, Colorado Mule Deer Association, Colorado Mule Deer Foundation, Colorado Oil and Gas Conservation Commission, Colorado State University, Williams Production LMT CO., Chevron Corporation, EnCana Corp., ExxonMobil Production Co., Shell Petroleum, Marathon Oil Corp. and Colorado Parks and Wildlife (CPW). We thank C. Bishop, D. Freddy, M. Michaels and the personnel at Little Hills State Wildlife Area for support. We thank L. Gepfert and L. Coulter for fixed-wing aircraft support, and L. Wolfe, M. Fisher, C. Bishop, and D. Finley of CPW for assistance during capture efforts. We thank B. Walker and E. Bergman for reviewing previous versions of this manuscript. Finally, we thank the White River Bureau of Land Management and the U.S. Forest Service, along with numerous private landowners for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. Lendrum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lendrum, P.E., Northrup, J.M., Anderson, C.R. et al. Predation risk across a dynamic landscape: effects of anthropogenic land use, natural landscape features, and prey distribution. Landscape Ecol 33, 157–170 (2018). https://doi.org/10.1007/s10980-017-0590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0590-z

Keywords

  • Carnivores
  • Disturbance ecology
  • Energy development
  • Habitat fragmentation
  • Mule deer
  • Predation risk
  • Resource selection