Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species

Abstract

Context

With accelerated land-use change throughout the world, increased understanding of the relative effects of landscape composition and configuration on biological system and bioinvasion in particular, is needed to design effective management strategies. However, this topic is poorly understood in part because empirical studies often fail to account for large gradients of habitat complexity and offer insufficient or even no replication across habitats.

Objectives

The aim of this study was to disentangle the independent and interactive effects of landscape composition and landscape configuration on the establishment and spread of invasive insect species.

Methods

We explore a spatially-explicit, mechanistic modeling framework that allows for systematic investigation of the impact of changes in landscape composition and landscape configuration on establishment and spread of invasive insect species. Landscape metrics are used as an indicators of invasive insect establishment and spread.

Results

We showed that the presence of an Allee effect leads to a balance between the effectiveness of spread and invasion success. Spread is maximized at an intermediate dispersal level and inhibited at both low and high levels of dispersal. The landscape, by either increasing or mitigating the dispersal abilities of a species, can lead to a rate of spread under a dispersal threshold for which density and spread is at the highest.

Conclusion

Our study proposes that change in landscape structure is an additional explanation of the highly variable spread dynamics observed in natural and anthropogenic landscapes. Consequently, a landscape-scale perspective could significantly improve spread risk assessment and the design of control or containment strategies.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bartoń K (2016) MuMIn: multi-model inference, version 1.15.6. URL: https://cran.r-project.org/web/packages/MuMIn/index.html

  2. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Eigen adn Grothendieck G (2015) lme4: linear mixed-effects models using ’Eigen’ and S4, version 1.1-10. https://cran.r-project.org/web/packages/lme4/index.html

  3. Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37(6):517–527

    Article  Google Scholar 

  4. Bocedi G, Palmer SC, Pe’er G, Heikkinen RK, Matsinos YG, Watts K, Travis JM (2014) Rangeshifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods Ecol Evol 5(4):388–396

    Article  Google Scholar 

  5. Bradley BA (2010) Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 33(1):198–208

    Article  Google Scholar 

  6. Brown GP, Phillips BL, Webb JK, Shine R (2006) Toad on the road: use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol Conserv 133(1):88–94

    Article  Google Scholar 

  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  8. Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164(1):25–37

    Article  PubMed  Google Scholar 

  9. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67

    CAS  Article  PubMed  Google Scholar 

  10. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14(9):922–932

    Article  PubMed  Google Scholar 

  11. Christen D, Matlack G (2006) The role of roadsides in plant invasions: a demographic approach. Conserv Biol 20(2):385–391

    Article  PubMed  Google Scholar 

  12. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  13. Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88(1):96–106

    Article  PubMed  Google Scholar 

  14. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  15. Garden J, Mcalpine C, Peterson A, Jones D, Possingham H (2006) Review of the ecology of Australian urban fauna: a focus on spatially explicit processes. Aust Ecol 31(2):126–148

    Article  Google Scholar 

  16. Gardner RH (1999) RULE: map generation and a spatial analysis program. Landscape ecological analysis. Springer, New York, pp 280–303

    Google Scholar 

  17. Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Lands Ecol 22(1):15–29

    Article  Google Scholar 

  18. González-Moreno P, Pino J, Gassó N, Vilá M (2013) Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol Invas 15(3):547–557

    Article  Google Scholar 

  19. González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20(6):720–731

    Article  Google Scholar 

  20. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  21. Hanski IA, Gaggiotti OE (2004) Ecology, genetics and evolution of metapopulations. Elsevier, San Diego

    Google Scholar 

  22. Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782

    Article  Google Scholar 

  23. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8(1):91–101

    Article  Google Scholar 

  24. Heimpel GE, Asplen MK (2011) A ‘Goldilocks’ hypothesis for dispersal of biological control agents. BioControl 56(4):441–450

    Article  Google Scholar 

  25. Herrando-Pérez S, Delean S, Brook BW, Bradshaw CJ (2012) Density dependence: an ecological Tower of Babel. Oecologia 170(3):585–603

    Article  PubMed  Google Scholar 

  26. Huntley B, Barnard P, Altwegg R, Chambers L, Coetzee BW, Gibson L, Hockey PA, Hole DG, Midgley GF, Underhill LG, Willis SG (2010) Beyond bioclimatic envelopes: dynamic species’ range and abundance modelling in the context of climatic change. Ecography 33(3):621–626

    Google Scholar 

  27. Jaeger JA (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Lands Ecol 15(2):115–130

    Article  Google Scholar 

  28. Jankovic M, Petrovskii S (2013) Gypsy moth invasion in North America: a simulation study of the spatial pattern and the rate of spread. Ecol Complex 14:132–144

    Article  Google Scholar 

  29. Johnson DM, Liebhold AM, Tobin PC, Bjørnstad ON (2006) Allee effects and pulsed invasion by the gypsy moth. Nature 444(7117):361–363

    CAS  Article  PubMed  Google Scholar 

  30. Jonsen ID, Taylor PD (2000) Fine-scale movement behaviors of calopterygid damselflies are influenced by landscape structure: an experimental manipulation. Oikos 88(3):553–562

    Article  Google Scholar 

  31. Jonsson M, Straub CS, Didham RK, Buckley HL, Case BS, Hale RJ, Gratton C, Wratten SD (2015) Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J Appl Ecol 52(5):1274–1282

    Article  Google Scholar 

  32. Jules ES, Kauffman MJ, Ritts WD, Carroll AL (2002) Spread of an invasive pathogen over a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83(11):3167–3181

    Article  Google Scholar 

  33. La Morgia V, Malenotti E, Badino G, Bona F (2011) Where do we go from here? Dispersal simulations shed light on the role of landscape structure in determining animal redistribution after reintroduction. Lands Ecol 26(7):969–981

    Article  Google Scholar 

  34. Liebhold A, Bascompte J (2003) The allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6(2):133–140

    Article  Google Scholar 

  35. Lustig A, Stouffer DB, Roigé M, Worner SP (2015) Towards more predictable and consistent landscape metrics across spatial scales. Ecol Indic 57:11–21

    Article  Google Scholar 

  36. Lustig A, Worner SP, Pitt JPW, Doscher C, Stouffer DB, Senay SD (2017) A modelling framework for the establishment and spread of invasive species in heterogeneous environments. Ecol Evol 10.1002/ece3.2915

  37. Margosian ML, Garrett KA, Hutchinson JS (2009) Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience 59(2):141–151

    Article  Google Scholar 

  38. Martin PH, Canham CD, Marks PL (2008) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7(3):142–149

    Article  Google Scholar 

  39. McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  40. Meier ES, Dullinger S, Zimmermann NE, Baumgartner D, Gattringer A, Hülber K (2014) Space matters when defining effective management for invasive plants. Divers Distrib 20(9):1029–1043

    Article  Google Scholar 

  41. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Millennium ecosystem assessment. Island Press, Washington, DC

  42. Morel-Journel T, Girod P, Mailleret L, Auguste A, Blin A, Vercken E (2015) The highs and lows of dispersal: how connectivity and initial population size jointly shape establishment dynamics in discrete landscapes. Oikos 0:01–009

  43. Mundt CC, Sackett KE, Wallace LD (2011) Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen. Ecol Appl 21(2):321–328

    Article  PubMed  Google Scholar 

  44. Nesslage GM, Maurer BA, Gage SH (2007) Gypsy moth response to landscape structure differs from neutral model predictions: implications for invasion monitoring. Biol Invas 9(5):585–595

    Article  Google Scholar 

  45. Pitt JPW (2008) Modelling the spread of invasive species across heterogeneous landscapes. PhD thesis, Lincoln University, New Zealand

  46. Pitt JPW, Worner SP, Suarez AV (2009) Predicting argentine ant spread over the heterogeneous landscape using a spatially explicit stochastic model. Ecol Appl 19(5):1176–1186

    Article  PubMed  Google Scholar 

  47. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Ann Rev Environ Res 35:25–55

    Article  Google Scholar 

  48. Radeloff VC, Mladenoff DJ, Boyce MS (2000) The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos 90(3):417–430

    Article  Google Scholar 

  49. Richter R, Dullinger S, Essl F, Leitner M, Vogl G (2013) How to account for habitat suitability in weed management programmes? Biol Invas 15(3):657–669

    Article  Google Scholar 

  50. Rigot T, van Halder I, Jactel H (2014) Landscape diversity slows the spread of an invasive forest pest species. Ecography 37(7):648–658

    Article  Google Scholar 

  51. Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L (2014) Space, time and complexity in plant dispersal ecology. Mov Ecol 2(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saupe D (1988) Algorithms for random fractals. The science of fractal images. Springer, New York, pp 71–136

    Google Scholar 

  53. Schurr FM, Pagel J, Cabral JS, Groeneveld J, Bykova O, O’Hara RB, Hartig F, Kissling WD, Linder HP, Midgley GF, Schröder B (2012) How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. J Biogeogr 39(12):2146–2162

    Article  Google Scholar 

  54. Sebert-Cuvillier E, Simon-Goyheneche V, Paccaut F, Chabrerie O, Goubet O, Decocq G (2008) Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landsc Ecol 23(7):787–801

    Article  Google Scholar 

  55. Sharov AA, Liebhold AM (1998) Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8(4):1170–1179

    Article  Google Scholar 

  56. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  57. Smith R, Tan C, Srimani JK, Pai A, Riccione KA, Song H, You L (2014) Programmed Allee effect in bacteria causes a tradeoff between population spread and survival. Proc Nat Acad Sci USA 111(5):1969–1974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC (2013) Identification of 100 fundamental ecological questions. J Ecol 101(1):58–67

    Article  Google Scholar 

  59. Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V (2011) The relationship between agricultural intensification and biological control: experimental tests across europe. Ecol Appl 21(6):2187–2196

    Article  PubMed  Google Scholar 

  60. Tobin PC, Blackburn LM (2007) Slow the spread: a national program to manage the gypsy moth. General Technical Report-Northern Research Station, USDA Forest Service (NRS-6)

  61. Tobin PC, Liebhold AM, Anderson E (2015) Estimating spread rates of non-native species: the gypsy moth as a case study. In: Venette RC (ed) Pest Risk Modelling and Mapping for Invasive Alien Species. CAB International and USDA, Wallingford, pp 131–144

    Google Scholar 

  62. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87(3):661–685

    Article  PubMed  Google Scholar 

  63. Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landsc Ecol 26(4):461–472

    Article  Google Scholar 

  64. Wang L, Jackson DA (2014) Shaping up model transferability and generality of species distribution modeling for predicting invasions: implications from a study on Bythotrephes longimanus. Biol Invas 16:1–25

    Article  Google Scholar 

  65. Wang Z, Wu J, Shang H, Cheng J (2011) Landscape connectivity shapes the spread pattern of the rice water weevil: a case study from Zhejiang, China. Environ Manag 47(2):254–262

    Article  Google Scholar 

  66. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16(5):1192–1203

    Article  Google Scholar 

  67. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24(4):803–815

    Article  PubMed  Google Scholar 

  68. With KA, King AW (1999a) Dispersal success on fractal landscapes: a consequence of lacunarity thresholds. Landsc Ecol 14(1):73–82

    Article  Google Scholar 

  69. With KA, King AW (1999b) Extinction thresholds for species in fractal landscapes. Conserv Biol 13(2):314–326

    Article  Google Scholar 

  70. Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric For Entomol 6(1):1–20

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to all involved, including Ursula Torres, Mariona Roige and Marona Rovira Capdevila for their help with the interpretation of the results. Work was supported by Bio-Protection Research Centre, Canterbury, New Zealand.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Audrey Lustig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lustig, A., Stouffer, D.B., Doscher, C. et al. Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species. Landscape Ecol 32, 2311–2325 (2017). https://doi.org/10.1007/s10980-017-0570-3

Download citation

Keywords

  • Invasive insects
  • Heterogeneous landscape
  • Landscape metrics
  • Population dynamics
  • Invasive spread
  • Spatially-explicit stochastic models