Skip to main content
Log in

Identifying environmental drivers of spatial genetic structure of the European pine marten (Martes martes)

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

In a global context of erosion of biodiversity, the current environmental policy in Europe is oriented towards the creation and the preservation of ecological networks for wildlife. However, most of the management guidelines arose from a structural landscape diagnostic without truly taking into consideration species’ needs.

Objectives

We tested whether and how landscape elements influence the functional connectivity of landscapes for a forest specialist species, the European pine marten (Martes martes), in Northeastern France.

Methods

We collected pine marten scats and tissues from 13 evenly distributed study sites across the whole study area in order to test several types of barriers such as highways, waterways, and open agricultural fields. We crossed the results of several methods: spatial autocorrelation analysis, causal modelling framework, and clustering methods.

Results

The study indicates significant genetic differentiation among the sampling sites. A signal of isolation by distance was detected but disappeared after partialling out landscape or barrier resistance. The only model that was fully supported by causal modelling was the one identifying waterways as the main driver of genetic differentiation. Moreover, clustering analyses indicated the presence of genetic clusters, suggesting that pine marten spatial genetic pattern could be explained by the presence of waterways but also by their reluctance to cross open fields.

Conclusions

The current ecological network could thus be improved by increasing permeability of waterways, in particular navigation canals, and by maintaining and restoring forested corridors in agricultural plains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326

    Article  PubMed  Google Scholar 

  • Balestrieri A, Remonti L, Ruiz-Gonzalez A, Gomez-Moliner BJ, Vergara M, Priogioni C (2010) Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mamm Biol 75:412–419

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH, Participants of the Landscape Genetics Research Agenda Workshop 2007 (2009) Identifying future research needs in landscape genetics: where to from here? Land Ecol 24:455–463

  • Basto MP, Rodrigues M, Santos-Reis M, Bruford MW, Fernandes CA (2010) Isolation and characterization of 13 tetranucleotide microsatellite loci in the Stone marten (Martes foina). Conserv Genet Resour 2:317–319

    Article  Google Scholar 

  • Beier P (2005) Dispersal of juvenile cougars in fragmented habitat. J Wildlife Manag 59:228–237

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier

  • Bennett AF (1999) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. International Union for Conservation of Nature and Natural Resources, Gland

    Google Scholar 

  • Brainerd SM (1990) The pine marten and forest fragmentation: a review and synthesis. In: Myrberget S (ed), Transaction of the 19th IUGB Congress, Trondheim, pp 421–434

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21(6):877–889

    Article  Google Scholar 

  • Chen XY (2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecol Sin 20:884–892

    Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Coulon A, Guillot G, Cosson J-F, Angibault JM, Aulagnier S, Cargnelutti B, Galan M, Hewison AJ (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Shirk AJ, Landguth EL (2013a) Landscape genetics and limiting factors. Conserv Genet 14:263–274

    Article  Google Scholar 

  • Cushman SA, Wasserman TN, Landguth EL, Shirk AJ (2013b) Re-evaluating causal modeling with Mantel tests in landscape genetics. Diversity 5:51–72

    Article  Google Scholar 

  • Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1776–1778

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Muñoz SL (2012) Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy’s tamarin (Saguinus geoffroyi) in the Panama Canal watershed. Ecol Evol 2:298–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 14:3445–3457

    Article  Google Scholar 

  • Galpern P, Manseau M, Hettinga P, Wilson P, Smith K (2012) ALLELEMATCH: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Res. doi:10.1111/j.1755-0998.2012.03137.x

    Google Scholar 

  • Gillies CS, St. Clair CC (2008) Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proc Natl Acad Sci 105(50):19774–19779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Heredity 86(6):485–486

  • Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, De Angelo C, Di Bitetti MS, Salzano FM, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinform 23:1801–1806

    Article  CAS  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinform 24:1403–1405

    Article  CAS  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23:879–890

    Google Scholar 

  • Larroque J, Ruette S, Vandel J-M, Devillard S (2016) Divergent landscape effects on genetic differentiation in two populations of the European pine marten (Martes martes). Landscape Ecol 31(3):517–531

    Article  Google Scholar 

  • Legendre P (1993) Spatial auto-correlation: trouble or newparadigm. Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Trousselier M (1988) Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol Oceanogr 33:1055–1067

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J,  Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor G, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

  • Luoy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Mergey M, Helder R, Roeder JJ (2011) Effect of forest fragmentation on space use patterns in the European pine marten (Martes martes). J Mamm 92:328–335

    Article  Google Scholar 

  • Mergey M, Larroque J, Ruette S, Vandel J, Helder R, Queney G, Devillard S (2012) Linking habitat characteristics with genetic diversity of the European pine marten (Martes martes) in France. Eur J Wildl Res 58:909–922

    Article  Google Scholar 

  • Natali C, Banchi E, Ciofi C, Manzo E, Bartolommei P, Cozzolino R (2010) Characterization of 13 polymorphic microsatellite loci in the European pine marten Martes martes. Conserv Genet Resour 2:397–399

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: Community Ecology Package. R package version 2.2-1. University of Oulu: Oulu, Finland. http://cran.r-project.org

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2005) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pertoldi C, Barker SF, Madsen AB, Jørgensen H, Randi E, Muñoz J, Baagoe HJ, Loeschcke V (2008) Spatio-temporal population genetics of the Danish pine marten (Martes martes). Biol J Linn Soc 93:457–464

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna

  • Rayfield B, Fortin MJ, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecol 25:519–532

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129

    Article  PubMed  Google Scholar 

  • Ruiz-González A, Gurrutxaga M, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2014) Landscape genetics for the empirical assessment of resistance surfaces: the European pine marten (Martes martes) as a target-species of a regional ecological network. PLoS ONE 9:e110552

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Slatkin M (1973) Gene flow and selection in a cline. Genetics 75:733–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smouse P, Long J, Sokal R (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17(14):3389–3400

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

  • Sunnucks P (2000) Efficient genetic markers for populationbiology. Trends Ecol Evol 15:199–203

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, Hoboken

    Book  Google Scholar 

  • Valière N (2002) Gimlet: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Virgos E, Zalewski A, Rosalino LM, Mergey M (2012) Habitat ecology of genus Martes in Europe: a review of the evidences. In: Aubry KB, Zielinski WJ, Proulx G, Buskirk SW (eds) Biology and Conservation of Martens, sables, and fishers. A new synthesis. Cornell University Press, New York, pp 255–266

    Google Scholar 

  • Wade TG, Riitters KH, Wickham JD, Jones KB (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7:7

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Walker CW, Vila C, Landa A, Linden M, Ellegren H (2001) Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Mol Ecol 10(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zalewski A, Jedrzejewski W (2006) Spatial organisation and dynamics of the pine marten Martes martes population in Bialowieza Forest (E Poland) compared with other European woodlands. Ecography 29:31–43

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded by the Regional Concil of Champagne-Ardenne, by the University of Reims Champagne-Ardenne (URCA) through In Situ research program, by the French system of transmission system operators for electricity (Réseau de Transport Electrique, RTE), and by the Regional natural park of Avesnois. Data used in this work were partly produced through the technical facilities of the Centre Méditerranéen Environnement Biodiversité and of the Laboratoire des Pyrénées et des Landes. We thank all people who collaborated for samples collection and especially all hunters and trappers. We are also grateful to Eva Bellemain (SpyGen) for discussions on how to improve DNA amplification. Finally, we would like to thank Bertrand Gauffre and the two reviewers for comments that greatly improved the manuscript.

Funding

The Regional Concil of Champagne-Ardenne and the University of Reims Champagne-Ardenne through In Situ research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Mergey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mergey, M., Bardonnet, C., Quintaine, T. et al. Identifying environmental drivers of spatial genetic structure of the European pine marten (Martes martes). Landscape Ecol 32, 2261–2279 (2017). https://doi.org/10.1007/s10980-017-0567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0567-y

Keywords

Navigation