Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management

Abstract

Context

Sea lice are the most significant parasitic problem affecting wild and farmed salmon. Larval lice released from infected fish in salmon farms and their transport by water masses results in inter-farm networks of lice dispersal. Understanding this parasite connectivity is key to its control and effective management.

Objectives

Quantify the spatial and seasonal patterns in sea lice (Lepeophtheirus salmonis) dispersal in an area with intensive salmon farming. Identify emergent clusters in the network, where associated salmon farms could be used for coordinated management and spatial planning of the industry.

Methods

We used a biophysical model to simulate lice dispersal from 537 salmon farms along the Norwegian coastline for two seasons (spring and winter) from 2009 to 2014. We used network analysis to characterize dispersal pathways and quantify the spatial and temporal patterns in connectivity.

Results

Lice dispersal patterns and network metrics varied greatly between seasons, but differences were consistent amongst years. Winter networks presented more connections, and links were on average two times longer (average winter median = 36.5 ± 7.6 km, mean ± SE; average spring median = 17.8 ± 1.7 km). We identified 12 emergent farm clusters, which were similar across seasons and with the production areas for salmon aquaculture proposed by the Norwegian government.

Conclusions

Seasonal variations in lice development times, oceanographic processes and the topological arrangement of salmon farms affect lice dispersal patterns. We have identified a biologically meaningful and politically tractable alliance structure for sea lice management consisting of closely-associated clusters of farms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31(2):72–81

    CAS  Article  PubMed  Google Scholar 

  2. Adams TP, Aleynik D, Black KD (2016) Temporal variability in sea lice population connectivity and implications for regional management protocols. Aquac Environ Interact 8:585–596

    Article  Google Scholar 

  3. Ådlandsvik B (2015) Forslag til produksjonsområder: Rapport til nærings- og fiskeridepartementet. https://brage.bibsys.no/xmlui/handle/11250/2374839. Accessed 20 Aug 2016

  4. Albretsen J, Sperrevik AK, Staalstrøm A, Sandvik AD, Vikebø F, Asplin L (2011) NorKyst-800 report no. 1: user manual and technical descriptions, IMR Res Rep Ser Fisken og Havet 2/2011. Institute of Marine Research, Bergen

  5. Amundrud TL, Murray AG (2009) Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. J Fish Dis 32(1):27–44

    CAS  Article  PubMed  Google Scholar 

  6. Anderson R, May R (1979) Population biology of infectious diseases: part I. Nature 280:361–367

    CAS  Article  PubMed  Google Scholar 

  7. Arriagada G, Stryhn H, Sanchez J, Vanderstichel R, Campistó JL, Rees EE, Ibarra R, St-Hilaire S (2017) Evaluating the effect of synchronized sea lice treatments in Chile. Prev Vet Med 136:1–10

    CAS  Article  PubMed  Google Scholar 

  8. Asplin L, Johnsen IA, Sandvik AD, Albretsen J, Sundfjord V, Aure J, Boxaspen KK (2014) Dispersion of salmon lice in the Hardangerfjord. Mar Biol Res 10(3):216–225

    Article  Google Scholar 

  9. Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, Taylor S, Ljungfeldt LE, Nilsen F, Glover KA (2014) Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genom 15(937):937

    Article  Google Scholar 

  10. Bricknell IR, Dalesman SJ, O’Shea B, Pert CC, Mordue Luntz AJ (2006) Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis Aquat Org 71(3):201

    Article  PubMed  Google Scholar 

  11. Bron JE, Sommerville C, Wootten R, Rae GH (1993) Fallowing of marine Atlantic salmon, Salmo salar L., farms as a method for the control of sea lice, Lepeophtheirus salmonis (Kroyer, 1837). J Fish Dis 16(5):487–493

    Article  Google Scholar 

  12. Burka JF, Fast MD, Revie CW (2012) Lepeophtheirus salmonis and Caligus rogercresseyi. In: Woo PTK, Buchmann K (eds) Fish parasites: pathobiology and protection. CAB International, Oxfordshire, pp 350–370

    Google Scholar 

  13. Crandall ED, Treml EA, Liggins L, Gleeson L, Yasuda N, Barber PH, Wörheide G, Riginos C (2014) Return of the ghosts of dispersal past: historical spread and contemporary gene flow in the blue sea star Linckia laevigata. Bull Mar Sci 90(1):399–425

    Article  Google Scholar 

  14. Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22(10):475–483

    Article  PubMed  Google Scholar 

  15. Costello MJ (2009a) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32(1):115–118

    Article  PubMed  Google Scholar 

  16. Costello MJ (2009b) How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc R Soc B 276(1672):3385–3394

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dempster T, Uglem I, Sanchez-Jerez P, Fernandez-Jover D, Bayle-Sempere J, Nilsen R, Bjørn PA (2009) Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Mar Ecol Prog Ser 385:1–14

    Article  Google Scholar 

  18. Denholm I, Devine GJ, Horsberg TE, Sevatdal S, Fallang A, Nolan DV, Powell R (2002) Analysis and management of resistance to chemotherapeutants in salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae). Pest Manag Sci 58(6):528–536

    CAS  Article  PubMed  Google Scholar 

  19. FAO (2016) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, p 200

    Google Scholar 

  20. Flamarique I, Browman HI, Belanger M, Boxaspen K (2000) Ontogenetic changes in visual sensitivity of the parasitic salmon louse Lepeophtheirus salmonis. J Exp Biol 203(11):1649–1657

    Google Scholar 

  21. Genna RL, Mordue W, Pike AW, Mordue AJ (2005) Light intensity, salinity, and host velocity influence presettlement intensity and distribution on hosts by copepodids of sea lice, Lepeophtheirus salmonis. Can J Fish Aquat Sci 62(12):2675–2682

    Article  Google Scholar 

  22. Gillibrand PA, Willis KJ (2007) Dispersal of sea louse larvae from salmon farms: modelling the influence of environmental conditions and larval behaviour. Aquat Biol 1(1):63–75

    Article  Google Scholar 

  23. Green DM (2010) A strategic model for epidemic control in aquaculture. Prev Vet Med 94(1–2):119–127

    Article  PubMed  Google Scholar 

  24. Groner ML, Rogers LA, Bateman AW, Connors BM, Frazer LN, Godwin SC, Krkošek M, Lewis MA, Peacock SJ, Rees EE, Revie CW, Schlägel UE (2016) Lessons from sea louse and salmon epidemiology. Phil Trans R Soc B. doi:10.1098/rstb.2015.0203

    Google Scholar 

  25. Harte AJ, Bowman AS, Salama NKG, Pert CC (2017) Factors influencing the long-term dynamics of larval sea lice density at east and west coast locations in Scotland. Dis Aquat Org 123(3):181–192

    Article  PubMed  Google Scholar 

  26. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285(5433):1505–1510

    CAS  Article  PubMed  Google Scholar 

  27. Harvell D, Aronson R, Baron N, Connell J, Dobson A, Ellner S, Gerber L, Kim K, Kuris A, McCallum H, Lafferty K, McKay B, Porter J, Pascual M, Smith G, Sutherland K, Ward J (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ 2(7):375–382

    Article  Google Scholar 

  28. Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2017) Increased catalase activity—a possible resistance mechanism in hydrogen peroxide resistant salmon lice (Lepeophtheirus salmonis). Aquaculture 468(1):135–140

    CAS  Article  Google Scholar 

  29. Heuch PA, Parsons A, Boxaspen K (1995) Diel vertical migration: a possible host-finding mechanism in salmon louse (Lepeophtheirus salmonis) copepodids? Can J Fish Aquat Sci 52(4):681–689

    Article  Google Scholar 

  30. Heuch PA, Revie CW, Gettinby G (2003) A comparison of epidemiological patterns of salmon lice, Lepeophtheirus salmonis, infections on farmed Atlantic salmon, Salmo salar L., in Norway and Scotland. J Fish Dis 26(9):539–551

    CAS  Article  PubMed  Google Scholar 

  31. Hogan JD, Thiessen RJ, Sale PF, Heath DD (2012) Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish. Oecologia 168(1):61–71

    Article  PubMed  Google Scholar 

  32. Hornik K (2015) A CLUE for CLUster Ensembles. J Stat Softw 14(12):1–25

    Google Scholar 

  33. Hornik K (2016) Clue: Cluster ensembles. https://CRAN.R-project.org/package=clue. Accessed 19 Apr 2017

  34. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  35. Johnsen IA, Asplin LC, Sandvik AD, Serra-Llinares RM (2016) Salmon lice dispersion in a northern Norwegian fjord system and the impact of vertical movements. Aquac Environ Interact 8:99–116

    Article  Google Scholar 

  36. Johnsen IA, Øyvind F, Sandvik AD, Asplin L (2014) Vertical salmon lice behaviour as a response to environmental conditions and its influence on regional dispersion in a fjord system. Aquac Environ Interact 5(2):127–141

    Article  Google Scholar 

  37. Kininmonth S, van Oppen MJH, Possingham HP (2010) Determining the community structure of the coral Seriatopora hystrix from hydrodynamic and genetic networks. Ecol Model 221(24):2870–2880

    Article  Google Scholar 

  38. Kristoffersen AB, Jimenez D, Viljugrein H, Grøntvedt R, Stien A, Jansen PA (2014) Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms. Epidemics 9:31–39

    Article  PubMed  Google Scholar 

  39. Krkošek M, Connors BM, Morton A, Lewis MA, Dill LM, Hilborn R (2011) Effects of parasites from salmon farms on productivity of wild salmon. Proc Natl Acad Sci USA 108(35):14700–14704

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krkošek M, Revie CW, Gargan PG, Skilbrei OT, Finstad B, Todd CD (2013) Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proc R Soc Lond B. doi:10.1098/rspb.2012.2359

    Google Scholar 

  41. Lees F, Gettinby G, Revie CW (2008) Changes in epidemiological patterns of sea lice infestation on farmed Atlantic salmon, Salmo salar L., in Scotland between 1996 and 2006. J Fish Dis 31(4):259–268

    CAS  Article  PubMed  Google Scholar 

  42. McCallum HI, Kuris A, Harvell CD, Lafferty KD, Smith GW, Porter J (2004) Does terrestrial epidemiology apply to marine systems? Trends Ecol Evol 19(11):585–591

    Article  Google Scholar 

  43. Melia M (2007) Comparing clusterings–an information based distance. J Multivar Anal 98:873–895

    Article  Google Scholar 

  44. Middlemas SJ, Stewart DC, Mackay S, Armstrong JD (2009) Habitat use and dispersal of post-smolt sea trout Salmo trutta in a Scottish sea loch system. J Fish Biol 74(3):639–651

    CAS  Article  PubMed  Google Scholar 

  45. Ministry of Trade Industry and Fisheries (2017) Regulations on production areas for aquaculture of fish in the sea of salmon, trout and trout Norway. https://www.regjeringen.no/no/dokumenter/forskrift-om-produksjonsomrader-for-akvakultur-av-matfisk-i-sjo-av-laks-orret-og-regnbueorret-produksjonsomradeforskriften/id2527418/. Accessed 19 Apr 2017

  46. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17(6):1771–1782

    Article  PubMed  Google Scholar 

  47. Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  PubMed  Google Scholar 

  48. Murray AG, Gubbins M (2016) Spatial management measures for disease mitigation as practiced in Scottish aquaculture. Mar Policy 70:93–100

    Article  Google Scholar 

  49. Murray AG, Peeler EJ (2005) A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med 67(2–3):223–235

    Article  PubMed  Google Scholar 

  50. Nepusz G, Csárdi G ( (2006) The igraph software package for complex network research. Complex Syst 1695:1–9

    Google Scholar 

  51. Newman M (2006a) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:19

    Article  Google Scholar 

  52. Newman M (2006b) Modularity and community structure in networks. PNAS 103:8577–8582

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Newman MC, Girvan M (2003) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  54. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Advances in neural information processing system. MIT press, Cambridge, pp. 849–856

  55. Norwegian Directorate of Fisheries (2015) Registre, Akvakulturtillatelser. http://www.fiskeridir.no/fiskeridir/akvakultur/registre. Accessed 4 May 2016

  56. Norwegian Directorate of Fisheries (2016) Statistics—Aquaculture. http://www.fiskeridir.no/fiskeridir/Akvakultur/Statistikk-akvakultur. Accessed 13 Apr 2017

  57. Norwegian Food Safety Authority (2016) Salmon lice. BarentsWatch. https://www.barentswatch.no/en/articles/Salmon-lice/. Accessed 5 Jul 2017

  58. Penston MJ, Davies IM (2009) An assessment of salmon farms and wild salmonids as sources of Lepeophtheirus salmonis (Krøyer) copepodids in the water column in Loch Torridon, Scotland. J Fish Dis 32(1):75–88

    CAS  Article  PubMed  Google Scholar 

  59. Penston MJ, Millar CP, Zuur A, Davies IM (2008) Spatial and temporal distribution of Lepeophtheirus salmonis (Krøyer) larvae in a sea loch containing Atlantic salmon, Salmo salar L., farms on the north-west coast of Scotland. J Fish Dis 31(5):361–371

    CAS  Article  PubMed  Google Scholar 

  60. Rees EE, St-Hilaire S, Jones SRM, Krkošek M, DeDominicis S, Foreman MGG, Patanasatienkul T, Revie CW (2015) Spatial patterns of sea lice infection among wild and captive salmon in western Canada. Landscape Ecol 30(6):989–1004

    Article  Google Scholar 

  61. Ritchie G, Boxaspen KK (2011) Salmon louse management on farmed salmon. In: Jones S, Beamish R (eds) Salmon lice: an integrated approach to understanding parasite abundance and distribution. Wiley, hoboken, pp 151–176

    Google Scholar 

  62. Salama NK, Rabe B (2013) Developing models for investigating the environmental transmission of disease-causing agents within open-cage salmon aquaculture. Aquac Environ Interact 4:91–115

    Article  Google Scholar 

  63. Samsing F, Johnsen I, Stien LH, Oppedal F, Albretsen J, Asplin L, Dempster T (2016a) Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model. Prev Vet Med 129(1):48–57

    Article  PubMed  Google Scholar 

  64. Samsing F, Oppedal F, Dalvin S, Vågseth T, Dempster T (2016b) Salmon lice (Lepeophtheirus salmonis) development times, body size and reproductive outputs follow universal models of temperature dependence. Can J Fish Aquat Sci 73(12):1841–1851

    Article  Google Scholar 

  65. Samsing F, Solstorm D, Oppedal F, Solstorm F, Dempster T (2015) Gone with the flow: current velocities mediate parasitic infestation of an aquatic host. Int J Parasitol 45(8):559–565

    Article  PubMed  Google Scholar 

  66. Sandvik AD, Bjørn PA, Ådlandsvik B, Asplin L, Skarðhamar J, Johnsen IA, Myksvoll M, Skogen MD (2016) Toward a model-based prediction system for salmon lice infestation pressure. Aquac Environ Interact 8:527–542

    Article  Google Scholar 

  67. Shephard S, MacIntyre C, Gargan P (2016) Aquaculture and environmental drivers of salmon lice infestation and body condition in sea trout. Aquac Environ Interac 8:597–610

    Article  Google Scholar 

  68. Simpson TI, Armstrong JD, Jarman AP (2010) Merged consensus clustering to assess and improve class discovery with microarray data. BMC Bioinform 11(1):590

    Article  Google Scholar 

  69. Sivertsgård R, Thorstad EB, Økland F, Finstad B, Bjørn PA, Jepsen N, Nordal T, McKinley RS (2007) Effects of salmon lice infection and salmon lice protection on fjord migrating Atlantic salmon and brown trout post-smolts. Hydrobiologia 582(1):35–42

    Article  Google Scholar 

  70. Skagseth Ø, Drinkwater KF, Terrile E (2011) Wind- and buoyancy-induced transport of the Norwegian coastal current in the Barents Sea. J Geophys Res 116(C08007):1–15

    Google Scholar 

  71. Stucchi D, Guo M, Foreman M, Czajko P, Galbraith M, Mackas D, Gillibrand PA (2011) Modelling sea lice production and concentrations in Broughton Archipelago, British Columbia. In: Jones SRM, Beamish R (eds) Salmon lice: an integrated approach to understanding parasite abundance and distribution. Wiley, Oxford, pp 117–150

    Google Scholar 

  72. Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402(6763):799–802

    CAS  Article  Google Scholar 

  73. Thorstad EB, Forseth T (2016) Status of Norwegian salmon stocks in 2016. The Norwegian Institute for Nature Research NINA. https://brage.bibsys.no/xmlui/handle/11250/2394052. Accessed 13 Apr 2017

  74. Thorstad EB, Økland F, Finstad B, Sivertsgård R, Plantalech N, Bjørn PA, McKinley RS (2007) Fjord migration and survival of wild and hatchery-reared Atlantic salmon and wild brown trout post-smolts. Hydrobiologia 582(1):99–107

    Article  Google Scholar 

  75. Treml EA, Ford JR, Black KP, Swearer SE (2015) Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov Ecol 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  76. Treml EA, Halpin PN (2012) Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle. Conserv Lett 5(6):441–449

    Article  Google Scholar 

  77. Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape ecol 23(1):19–36

    Article  Google Scholar 

  78. Tucker CS, Sommerville C, Wootten R (2000) The effect of temperature and salinity on the settlement and survival of copepodids of Lepeophtheirus salmonis (Krøyer, 1837) on Atlantic salmon, Salmo salar L. J Fish Dis 23(5):309–320

    Article  Google Scholar 

  79. Urban D, Keitt T (2001) Landscape connectivity: A graph-theoretic perspective. Ecology 82(5):1205–1218

    Article  Google Scholar 

  80. Werkman M, Green DM, Murray AG, Turnbull JF (2011) The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model. Prev Vet Med 98(1):64–73

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Research Council of Norway through the Havbruk program to project # 244439 Regional lice assessmenttowards a model based management system to FO & TD, an Australian Research Council Future Fellowship to TD, and an Australian Postgraduate Training Research Scholarship (IPRS) to FS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisca Samsing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2891 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samsing, F., Johnsen, I., Dempster, T. et al. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landscape Ecol 32, 1953–1967 (2017). https://doi.org/10.1007/s10980-017-0557-0

Download citation

Keywords

  • Connectivity
  • Spatial epidemiology
  • Cluster analysis
  • Sea lice
  • Lepeophtheirus salmonis
  • Disease management