A multi-species approach for assessing the impact of land-cover changes on landscape connectivity

Abstract

Context

Land-cover changes (LCCs) could impact wildlife populations through gains or losses of natural habitats and changes in the landscape mosaic. To assess such impacts, we need to focus on landscape connectivity from a diachronic perspective.

Objectives

We propose a method for assessing the impact of LCCs on landscape connectivity through a multi-species approach based on graph theory. To do this, we combine two approaches devised to spatialize the variation of multi-species connectivity and to quantify the importance of types of LCCs for single-species connectivity by highlighting the possible contradictory effects.

Methods

We begin with a list of landscape species and create virtual species with similar ecological requirements. We model the ecological network of these virtual species at two dates and compute the variation of a local and global connectivity metric to assess the impacts of the LCCs on their dispersal capacities.

Results

The spatial variation of multi-species connectivity showed that local impacts range from −6.4% to +3.2%. The assessment of the impacts of types of LCCs showed a variation in global connectivity ranging from −45.1% for open-area reptiles to +170.2% for natural open-area birds with low-dispersion capacities.

Conclusions

This generic approach can be reproduced in a large variety of spatial contexts by adapting the selection of the initial species. The proposed method could inform and guide conservation actions and landscape management strategies so as to enhance or maintain connectivity for species at a landscape scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baillie J, Hilton-Taylor C, Stuart SN (2004) 2004 IUCN red list of threatened species: a global species assessment

  2. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  3. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  4. Chamberlain DE, Fuller RJ, Bunce RG, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37(5):771–788

    Article  Google Scholar 

  5. Clauzel C, Bannwarth C, Foltete J-C (2015) Integrating regional-scale connectivity in habitat restoration: an application for amphibian conservation in eastern France. J Nat Conserv 23:98–107

    Article  Google Scholar 

  6. Clauzel C, Girardet X, Foltête J-C (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127:125–134

    Article  Google Scholar 

  7. Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15:396–406

    Article  Google Scholar 

  8. Cushman SA, Landguth EL (2012) Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol Modell 231:101–112

    Article  Google Scholar 

  9. Cushman SA, Landguth EL, Flather CH (2013) Evaluating population connectivity for species of conservation concern in the American Great Plains. Biodivers Conserv 22:2583–2605

    Article  Google Scholar 

  10. Dunford W, Freemark K (2005) Matrix matters: effects of Surrounding Land Uses on Forest Birds Near Ottawa, Canada. Landscape Ecol 20:497–511

    Article  Google Scholar 

  11. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  12. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610

    Article  Google Scholar 

  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309(5734):570–574

    CAS  Article  PubMed  Google Scholar 

  15. Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  16. Foltete J-C, Clauzel C, Vuidel G, Tournant P (2012) Integrating graph-based connectivity metrics into species distribution models. Landscape Ecol 27:557–569

    Article  Google Scholar 

  17. Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  18. Forman RTT (1995) Land Mosaics. The ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  19. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  20. Fu W, Liu S, Degloria SD, Dong S, Beazley R (2010) Characterizing the “fragmentation–barrier” effect of road networks on landscape connectivity: A case study in Xishuangbanna, Southwest China. Landsc Urban Plann 95(3):122–129

    Article  Google Scholar 

  21. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  22. Geneletti D (2006) Some common shortcomings in the treatment of impacts of linear infrastructures on natural habitat. Environ Impact Assess Rev 26:257–267

    Article  Google Scholar 

  23. Giplin M, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, London

    Google Scholar 

  24. Girardet X, Foltête J-C, Clauzel C (2013) Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ Impact Assess Rev 42:10–17

    Article  Google Scholar 

  25. Goetz SJ, Jantz P, Jantz CA (2009) Connectivity of core habitat in the Northeastern United States: parks and protected areas in a landscape context. Remote Sens Environ 113:1421–1429

    Article  Google Scholar 

  26. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320

    Article  Google Scholar 

  27. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    CAS  Article  PubMed  Google Scholar 

  28. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Modell 145:111–121

    Article  Google Scholar 

  29. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381

    Article  Google Scholar 

  30. Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Article  Google Scholar 

  31. Lislevand T, Figuerola J, Szekely T (2007) Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88:1605

    Article  Google Scholar 

  32. Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy SA, McBride M, Mengersen K (2012) Eliciting expert knowledge in conservation science. Conserv Biol 26(1):29–38

    Article  PubMed  Google Scholar 

  33. Millenium Ecosystem Assessment (2003) Ecosystems and human well-being: general synthesis. Island Press, Washington

    Google Scholar 

  34. Mimet A, Clauzel C, Foltête J-C (2016) Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecol. doi:10.1007/s10980-016-0373-y

    Google Scholar 

  35. Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv Biol 24:1549–1558

    Article  PubMed  Google Scholar 

  36. MNHN (2011) Trame verte et bleue. Critères nationaux de cohérence. Contribution à la définition du critère sur les espèces

  37. Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483

    CAS  Article  Google Scholar 

  38. Opdam P, Pouwels R, Steingröver S, Vos C (2008) Setting biodiversity targets in participatory regional planning: introducing ecoprofiles. Ecol Soc 13:20

    Article  Google Scholar 

  39. Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292

    Article  Google Scholar 

  40. Pereira M, Segurado P, Neves N (2011) Using spatial network structure in landscape management and planning: a case study with pond turtles. Landsc Urban Plan 100:67–76

    Article  Google Scholar 

  41. Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268

    Article  Google Scholar 

  42. Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    Article  PubMed  Google Scholar 

  43. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    CAS  Article  PubMed  Google Scholar 

  44. Sanderson EW, Redford KH, Vedder A, Coppolillo PB, Ward SE (2002) A conceptual model for conservation planning based on landscape species requirements. Landsc Urban Plan 58:41–56

    Article  Google Scholar 

  45. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  46. Saura S, Vogt P, Velásquez J, Hernando A, Tejera R (2011) Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For Ecol Manag 262:150–160

    Article  Google Scholar 

  47. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  48. Smith FA, Lyons SK, Ernest SK, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84(12):3403

    Article  Google Scholar 

  49. Solé RV, Bascompte J (2006) Self-organization in complex ecosystems. Princeton University Press, Princeton

    Google Scholar 

  50. Sordello R, Conruyt-Rogeon G, Merlet F, Houard X, Touroult J (2013) Synthèses bibliographiques sur les traits de vie de 39 espèces proposées pour la cohérence nationale de la Trame verte et bleue relatifs à leurs déplacements et besoins de continuité écologique. Paris

  51. Sutherland G, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4(1):16

    Article  Google Scholar 

  52. Tannier C, Bourgeois M, Houot H, Foltête J (2016) Land Use Policy Impact of urban developments on the functional connectivity of forested habitats: a joint contribution of advanced urban models and landscape graphs. Land Use Policy 52:76–91

    Article  Google Scholar 

  53. Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 29–43

  54. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. PNAS 104:20666–20671

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. UN General Assembly (2012) The Future we want (Resolution adopted by the General Assembly on 27 July 2012). United Nations 53

  56. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  57. Vasas V, Magura T, Jordan F, Tothmeresz B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586

    Article  Google Scholar 

  58. Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG, Wickham JD (2007) Mapping spatial patterns with morphological image processing. Landscape Ecol 22:171–177

    Article  Google Scholar 

  59. Vos CC, Verboom J, Opdam PF, Ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41

    CAS  Article  PubMed  Google Scholar 

  60. Yager R (1977) Multiple objective decision-making using fuzzy sets. Int J Man Mach Stud 9:375–382

    Article  Google Scholar 

  61. Zeller KA, Mcgarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Article  Google Scholar 

  62. Zetterberg A, Mortberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their relevant suggestions that have improved the manuscript. They are very grateful to Anne Mimet for constructive discussions about allometric relationships and Gilles Vuidel for the technical improvement of Graphab software by implementing the transition decomposition process and the spatial generalization of local connectivity metrics. Land-cover data were provided by the Institut d’Aménagement et d’Urbanisme de la Région Île-de-France (IAU-IDF). The graph analysis was performed using the Graphab software, developed by Gilles Vuidel (UMR 6049 ThéMA), in the framework of the ODIT project of the USR 3124 MSHE Ledoux, funded by European FEDER funds. Computations were performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yohan Sahraoui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 49 kb)

Supplementary material 2 (XLSX 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahraoui, Y., Foltête, J. & Clauzel, C. A multi-species approach for assessing the impact of land-cover changes on landscape connectivity. Landscape Ecol 32, 1819–1835 (2017). https://doi.org/10.1007/s10980-017-0551-6

Download citation

Keywords

  • Connectivity
  • Dispersion
  • Multi-species
  • Landscape graphs
  • Land-cover changes
  • Impact assessment