Landscape Ecology

, Volume 32, Issue 9, pp 1819–1835 | Cite as

A multi-species approach for assessing the impact of land-cover changes on landscape connectivity

  • Yohan SahraouiEmail author
  • Jean-Christophe Foltête
  • Céline Clauzel
Research Article



Land-cover changes (LCCs) could impact wildlife populations through gains or losses of natural habitats and changes in the landscape mosaic. To assess such impacts, we need to focus on landscape connectivity from a diachronic perspective.


We propose a method for assessing the impact of LCCs on landscape connectivity through a multi-species approach based on graph theory. To do this, we combine two approaches devised to spatialize the variation of multi-species connectivity and to quantify the importance of types of LCCs for single-species connectivity by highlighting the possible contradictory effects.


We begin with a list of landscape species and create virtual species with similar ecological requirements. We model the ecological network of these virtual species at two dates and compute the variation of a local and global connectivity metric to assess the impacts of the LCCs on their dispersal capacities.


The spatial variation of multi-species connectivity showed that local impacts range from −6.4% to +3.2%. The assessment of the impacts of types of LCCs showed a variation in global connectivity ranging from −45.1% for open-area reptiles to +170.2% for natural open-area birds with low-dispersion capacities.


This generic approach can be reproduced in a large variety of spatial contexts by adapting the selection of the initial species. The proposed method could inform and guide conservation actions and landscape management strategies so as to enhance or maintain connectivity for species at a landscape scale.


Connectivity Dispersion Multi-species Landscape graphs Land-cover changes Impact assessment 



The authors thank the reviewers for their relevant suggestions that have improved the manuscript. They are very grateful to Anne Mimet for constructive discussions about allometric relationships and Gilles Vuidel for the technical improvement of Graphab software by implementing the transition decomposition process and the spatial generalization of local connectivity metrics. Land-cover data were provided by the Institut d’Aménagement et d’Urbanisme de la Région Île-de-France (IAU-IDF). The graph analysis was performed using the Graphab software, developed by Gilles Vuidel (UMR 6049 ThéMA), in the framework of the ODIT project of the USR 3124 MSHE Ledoux, funded by European FEDER funds. Computations were performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

Supplementary material

10980_2017_551_MOESM1_ESM.xlsx (49 kb)
Supplementary material 1 (XLSX 49 kb)
10980_2017_551_MOESM2_ESM.xlsx (52 kb)
Supplementary material 2 (XLSX 52 kb)


  1. Baillie J, Hilton-Taylor C, Stuart SN (2004) 2004 IUCN red list of threatened species: a global species assessmentGoogle Scholar
  2. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278CrossRefGoogle Scholar
  3. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536CrossRefGoogle Scholar
  4. Chamberlain DE, Fuller RJ, Bunce RG, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37(5):771–788CrossRefGoogle Scholar
  5. Clauzel C, Bannwarth C, Foltete J-C (2015) Integrating regional-scale connectivity in habitat restoration: an application for amphibian conservation in eastern France. J Nat Conserv 23:98–107CrossRefGoogle Scholar
  6. Clauzel C, Girardet X, Foltête J-C (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127:125–134CrossRefGoogle Scholar
  7. Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15:396–406CrossRefGoogle Scholar
  8. Cushman SA, Landguth EL (2012) Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol Modell 231:101–112CrossRefGoogle Scholar
  9. Cushman SA, Landguth EL, Flather CH (2013) Evaluating population connectivity for species of conservation concern in the American Great Plains. Biodivers Conserv 22:2583–2605CrossRefGoogle Scholar
  10. Dunford W, Freemark K (2005) Matrix matters: effects of Surrounding Land Uses on Forest Birds Near Ottawa, Canada. Landscape Ecol 20:497–511CrossRefGoogle Scholar
  11. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142CrossRefPubMedGoogle Scholar
  12. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610CrossRefGoogle Scholar
  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309(5734):570–574CrossRefPubMedGoogle Scholar
  15. Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327CrossRefGoogle Scholar
  16. Foltete J-C, Clauzel C, Vuidel G, Tournant P (2012) Integrating graph-based connectivity metrics into species distribution models. Landscape Ecol 27:557–569CrossRefGoogle Scholar
  17. Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150CrossRefGoogle Scholar
  18. Forman RTT (1995) Land Mosaics. The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  19. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231CrossRefGoogle Scholar
  20. Fu W, Liu S, Degloria SD, Dong S, Beazley R (2010) Characterizing the “fragmentation–barrier” effect of road networks on landscape connectivity: A case study in Xishuangbanna, Southwest China. Landsc Urban Plann 95(3):122–129CrossRefGoogle Scholar
  21. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55CrossRefGoogle Scholar
  22. Geneletti D (2006) Some common shortcomings in the treatment of impacts of linear infrastructures on natural habitat. Environ Impact Assess Rev 26:257–267CrossRefGoogle Scholar
  23. Giplin M, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, LondonGoogle Scholar
  24. Girardet X, Foltête J-C, Clauzel C (2013) Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ Impact Assess Rev 42:10–17CrossRefGoogle Scholar
  25. Goetz SJ, Jantz P, Jantz CA (2009) Connectivity of core habitat in the Northeastern United States: parks and protected areas in a landscape context. Remote Sens Environ 113:1421–1429CrossRefGoogle Scholar
  26. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320CrossRefGoogle Scholar
  27. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758CrossRefPubMedGoogle Scholar
  28. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Modell 145:111–121CrossRefGoogle Scholar
  29. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381CrossRefGoogle Scholar
  30. Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856CrossRefGoogle Scholar
  31. Lislevand T, Figuerola J, Szekely T (2007) Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88:1605CrossRefGoogle Scholar
  32. Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy SA, McBride M, Mengersen K (2012) Eliciting expert knowledge in conservation science. Conserv Biol 26(1):29–38CrossRefPubMedGoogle Scholar
  33. Millenium Ecosystem Assessment (2003) Ecosystems and human well-being: general synthesis. Island Press, WashingtonGoogle Scholar
  34. Mimet A, Clauzel C, Foltête J-C (2016) Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecol. doi: 10.1007/s10980-016-0373-y Google Scholar
  35. Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv Biol 24:1549–1558CrossRefPubMedGoogle Scholar
  36. MNHN (2011) Trame verte et bleue. Critères nationaux de cohérence. Contribution à la définition du critère sur les espècesGoogle Scholar
  37. Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483CrossRefGoogle Scholar
  38. Opdam P, Pouwels R, Steingröver S, Vos C (2008) Setting biodiversity targets in participatory regional planning: introducing ecoprofiles. Ecol Soc 13:20CrossRefGoogle Scholar
  39. Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292CrossRefGoogle Scholar
  40. Pereira M, Segurado P, Neves N (2011) Using spatial network structure in landscape management and planning: a case study with pond turtles. Landsc Urban Plan 100:67–76CrossRefGoogle Scholar
  41. Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268CrossRefGoogle Scholar
  42. Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858CrossRefPubMedGoogle Scholar
  43. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774CrossRefPubMedGoogle Scholar
  44. Sanderson EW, Redford KH, Vedder A, Coppolillo PB, Ward SE (2002) A conceptual model for conservation planning based on landscape species requirements. Landsc Urban Plan 58:41–56CrossRefGoogle Scholar
  45. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103CrossRefGoogle Scholar
  46. Saura S, Vogt P, Velásquez J, Hernando A, Tejera R (2011) Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For Ecol Manag 262:150–160CrossRefGoogle Scholar
  47. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128CrossRefGoogle Scholar
  48. Smith FA, Lyons SK, Ernest SK, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84(12):3403CrossRefGoogle Scholar
  49. Solé RV, Bascompte J (2006) Self-organization in complex ecosystems. Princeton University Press, PrincetonGoogle Scholar
  50. Sordello R, Conruyt-Rogeon G, Merlet F, Houard X, Touroult J (2013) Synthèses bibliographiques sur les traits de vie de 39 espèces proposées pour la cohérence nationale de la Trame verte et bleue relatifs à leurs déplacements et besoins de continuité écologique. ParisGoogle Scholar
  51. Sutherland G, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4(1):16CrossRefGoogle Scholar
  52. Tannier C, Bourgeois M, Houot H, Foltête J (2016) Land Use Policy Impact of urban developments on the functional connectivity of forested habitats: a joint contribution of advanced urban models and landscape graphs. Land Use Policy 52:76–91CrossRefGoogle Scholar
  53. Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 29–43Google Scholar
  54. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. PNAS 104:20666–20671CrossRefPubMedPubMedCentralGoogle Scholar
  55. UN General Assembly (2012) The Future we want (Resolution adopted by the General Assembly on 27 July 2012). United Nations 53Google Scholar
  56. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218CrossRefGoogle Scholar
  57. Vasas V, Magura T, Jordan F, Tothmeresz B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586CrossRefGoogle Scholar
  58. Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG, Wickham JD (2007) Mapping spatial patterns with morphological image processing. Landscape Ecol 22:171–177CrossRefGoogle Scholar
  59. Vos CC, Verboom J, Opdam PF, Ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41CrossRefPubMedGoogle Scholar
  60. Yager R (1977) Multiple objective decision-making using fuzzy sets. Int J Man Mach Stud 9:375–382CrossRefGoogle Scholar
  61. Zeller KA, Mcgarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797CrossRefGoogle Scholar
  62. Zetterberg A, Mortberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ThéMA, UMR 6049 CNRS University of Bourgogne Franche-ComtéBesançon CedexFrance
  2. 2.LADYSS, UMR 7533 CNRS Sorbonne Paris Cité, University Paris-DiderotParisFrance

Personalised recommendations