Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Occupancy pattern of a long-horned beetle in a variegated forest landscape: linkages between tree quality and forest cover across spatial scales

  • 377 Accesses

  • 4 Citations



Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.


We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.


We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).


Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.


M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Adriaens D, Jacquemyn H, Honnay O, Hermy M (2009) Conservation of remnant populations of Colchicum autumnale: the relative importance of local habitat quality and habitat fragmentation. Acta Oecol 35:69–82

  2. Artigas J (1994) Entomología Económica: Insectos de interés agrícola, forestal, médico y veterinario (nativos, introducidos y susceptibles de ser introducidos). Ediciones Universidad de Concepción. 2 volúmenes

  3. Barriga J, Curkovic T, Fichet T, Henríquez J, Macaya J (1993) Nuevos antecedentes de coleópteros xilófagos y plantas hospederas en Chile, con una ecopilación de citas previas. Rev Chile Entomol 20:65–91

  4. Boulanger Y, Sirois L, Hebert C (2010) Distribution of saproxylic beetles in a recently burned landscape of the northern boreal forest of Quebec. For Ecol Manage 260:1114–1123

  5. Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276

  6. Buse J, Schröder B, Assmann T (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle—a case study for saproxylic insect conservation. Biol Conserv 137:372–381

  7. Cerda M (1986) Lista sistemática de los cerambícidos chilenos (Coleoptera: Cerambycidae). Rev Chile Entomol 14:29–39

  8. Cerda L, Angulo A (2002) Insectos asociados a bosques del centro sur de Chile. En: Baldini A. y Pancel, L. 2002. Agentes de Daño en el Bosque nativo. Editorial Universitaria, pp 201–268

  9. Cobb TP, Morissette JL, Jacobs JM, Koivula MJ, Spence JR, Langor DW (2011) Effects of post fire salvage logging on deadwood-associated beetles. Conserv Biol 25:94–104

  10. Cody ML (1985) Habitat selection in birds. Academic Press, Orlando

  11. Davis J, Debinski D, Danielson B (2007) Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landscape Ecol 22:1341–1354

  12. Doligez B, Berthouly A, Doligez D, Tanner M, Saladin V, Bonfils D, Richner H (2008) Spatial scale of local breeding habitat quality and adjustment of breeding decisions. Ecology 89:1436–1444

  13. Drielsma M, Ferrier S (2009) Rapid evaluation of metapopulation persistence in highly variegated landscapes. Biol Conserv 142:529–540

  14. Elgueta M (2000) Coleoptera de Chile. In: Martín-Piera F, Morrone JJ, y Melic A (eds) Hacia un Proyecto CYTED para el Inventario y Estimación de la Diversidad Entomológica en Iberoamérica: Monografías Tercer Milenio vol. 1. SEA, Zaragoza, pp 145–154

  15. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

  16. Fretwell SD, Lucas HL Jr (1970) On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor 19:16–36

  17. Gibb H, Hjalten J, Ball JP, Atlegrim O, Pettersson RB, Hilszczanski J, Johansson T, Danell K (2006) Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography 29:191–204

  18. Giganti H, Dapoto G (1990) Coleoptera of the native forests in the Department of Aluminé (Neuquén-Argentina). Bosque 11:37–44

  19. Graham EE, Mitchell RF, Reagel PF (2010) Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. J Econ Entomol 103:641–647

  20. Griffen BD, Drake JM (2008) Effects of habitat quality and size on extinction in experimental populations. Proc R Soc B 275:2251–2256

  21. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

  22. Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildl Soc Bull 25:171–182

  23. Handley K, Hough-Goldstein J, Hanks LM, Millar JG, D’amico V (2015) Species richness and phenology of cerambycid beetles in urban forest fragments of northern Delaware. Ann Entomol Soc Am 108(3):251–262

  24. Hanski I (2009) Incorporating the spatial configuration of the habitat into ecology and evolutionary biology. In: Ecology Spatial (ed) Cantrell S, Cosner C, Shigui Ruan S. Chapman and Hall/CRC New York, NewYork, pp 167–188

  25. Heisswolf A, Reichmann S, Poethke HJ, Schrader B, Obermaier E (2009) Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv 13:165–175

  26. Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233

  27. Holland JD, Fahrig L, Cappuccino N (2005) Body size affects the spatial scale of habitat-beetle interactions. Oikos 110:101–108

  28. Hutto RL (1985) Habitat selection by nonbreeding, migratory land birds. In: Cody ML (ed) Habitat selection in birds. Academic Press, Orlando, pp 455–476

  29. Jacobs J, Spence JR, Langor DW (2007) Influence of forest succession and dead wood qualities on boreal saproxylic beetles. Agric For Entomol 9:3–16

  30. Jacobsen RM, Sverdrup-Thygeson A, Birkemoe T (2015) Scale-specific responses of saproxylic beetles: combining dead wood surveys with data from satellite imagery. J Insect Conserv 19:1053–1062

  31. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

  32. Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnström B, Nordén B, Stokland JN (2006) Cost-effectiveness of silvicultural measures to increase substrate availability for redlisted wood-living organisms in Norway spruce forests. Biol Conserv 127:443–462

  33. Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504

  34. Kéry M, Schaub M (2011) Bayesian population analysis using winbugs—a hierarchical perspective. Academic Press, Waltham

  35. Kristan WB III (2006) Sources and expectations for hierarchical structure in bird-habitat associations. Condor 108:5–12

  36. Laaksonen M, Peuhu E, Varkonyi G, Siitonen J (2008) Effects of habitat quality and landscape structure on saproxylic species dwelling in boreal spruce-swamp forests. Oikos 117:1098–1110

  37. Lindenmayer DB, Fischer J (2007) Tackling the habitat fragmentation panchreston. Trends Ecol Evol 22:127–132

  38. Lombardi F, Cocozza C, Lasserre B, Tognetti R, Marchetti M (2011) Dendrochronological assessment of the time since death of dead wood in an old growth Magellan’s beech forest, Navarino Island (Chile). Austral Ecol 36:329–340

  39. Mason DC, Anderson GQA, Bradbury RB, Cobby DM, Davenport IJ, Vandepoll M, Wilson JD (2003) Measurement of habitat predictor variables for organism-habitat models using remote sensing and image segmentation. Int J Remote Sens 24:2515–2532

  40. Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247

  41. McIntosh RL, Katinic PJ, Allison JD (2001) Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agric For Entomol 3:113–120

  42. McIntyre S, Barrett GW (1992) Habitat variegation, an alternative to fragmentation. Conserv Biol 6(1):146–147

  43. Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VYU (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106:135–141

  44. Millar JG, Hanks LM, Moreira JA, Barbour JD, Lacey ES (2009) Pheromone chemistry of cerambycid beetles. In: Nakamuta K, Millar JG (eds) Chemical ecology of wood-boring insects. Forestry and Forest Products Research Institute, Ibaraki, pp 52–79

  45. Morrison ML, Marcot BG, Mannan RW (2006) Wildlife-habitat relationships: concepts and applications, 3rd edn. Island Press, Washington, DC

  46. Mortelliti A (2013) Targeting habitat management in fragmented landscapes: a case study with forest vertebrates. Biodivers Conserv 22:187–207

  47. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

  48. Mortelliti a, Sozio G, Boccacci F, Ranchelli E, Cecere JG, Battisti C, Boitani L (2012) Effect of habitat amount, configuration and quality in fragmented landscapes. Acta Oecol 45:1–7

  49. O’Neill RV, Johnson AR, King AW (1989) A hierarchical framework for the analysis of scale. Landscape Ecol 3:193–205

  50. Ojeda V, Chazarreta L (2014) Home range and habitat use by Magellanic woodpeckers in an old-growth forest of Patagonia. Can J For Res 44:1265–1273

  51. Økland B, Bakke A, Hagvar S (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiver Conserv 5:75–100

  52. Peters DPC, Peilke RA Sr, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM (2004) Cross scale interactions, nonlinearities, and forecasting catastrophic events. Proc Natl Acad Sci USA 101:15130–15135

  53. Pisano E (1977) Fitogeografía de Fuego-Patagonia chilena I.- Comunidades vegetales entre las latitudes 52° y 56°S. 8:121–250. Anales del Instituto de la Patagonia (Chile) 8:121–250

  54. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  55. Russo D, Cistrone L, Garonna AP (2011) Habitat selection by the highly endangered long-horned beetle Rosalia alpina in southern Europe: a multiple spatial scale assessment. J Insect Conserv 15:685–693

  56. Saint-Germain M, Buddle CM, Drapeau P (2006) Sampling saproxylic Coleoptera: scale issues and the importance of behavior. Environ Entomol 35:478–487

  57. Saint-Germain M, Drapeau P (2011) Response of saprophagous wood-boring beetles (Coleoptera: Cerambycidae) to severe habitat loss due to logging in an aspen-dominated boreal landscape. Landscape Ecol 26:573–586

  58. Sala OE, Chapin Iii FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

  59. Santos MJ, Greenberg JA, Ustin SL (2010) Using hyperspectral remote sensing to detect and quantify southeastern pine senescence effects in Red-cockaded woodpecker (Picoides borealis) habitat. Remote Sens Environ 114:1242–1250

  60. Schiegg K (2000) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7:290–298

  61. Schooley RL, Branch LC (2007) Spatial heterogeneity in habitat quality and cross-scale interactions in metapopulations. Ecosystems 10:846–853

  62. Siitonen J (2012) Microhabitats. In: Stokland J, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, United Kingdom, pp 151–182

  63. Similä M, Kouki J, Martikainen P, Uotila A (2002) Conservation of beetles in boreal pine forests: effects of forest age and naturalness on species assemblages. Biol Conserv 106:19–27

  64. Soto GE, Perez-Hernández CG, Hahn IJ, Rodewald AD, Vergara PM (2016) Tree senescence as a direct measure of habitat quality: linking red-edge vegetation indices to space use by magellanic woodpeckers. Remote Sens Environ (in press)

  65. Soto GE, Vergara PM, Lizama ME, Celis C, Rozzi R, Duron Q, Hahn IJ, Jiménez JE (2012) Do Beavers improve the habitat quality for Magellanic woodpeckers? Bosque 33:271–274

  66. Soto GE, Vergara PM, Perez-Hernández CG (2015) Home-range scale’s attributes limiting the habitat selection pattern on magellanic woodpecker. In: 100th ESA Annual Meeting, Baltimore, USA, 9–14 Aug 2015

  67. Sverdrup-Thygeson A, Gustafsson L, Kouki J (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodivers Conserv 23:513–535

  68. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc Lond B 267:139–145

  69. Thorn S, Bässler C, Gottschalk T, Hothorn T, Bussler H, Raffa K, Müller J (2014) New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS One 9(7):e101757.

  70. Updike T, Comp C (2010) Radiometric use of Worldview-2 imagery, DigitalGlobe. Technical Note. DigitalGlobe®, Colorado

  71. Verboom J, Schotman A, Opdam P, Metz JAJ (1991) European Nuthatch metapopulations in a fragmented agricultural landscape. Oikos 61:149–156

  72. Vergara PM, Armesto JJ (2009) Responses of Chilean forest birds to anthropogenic habitat fragmentation across spatial scales. Landscape Ecol 24:25–38

  73. Vergara PM, Saura S, Pérez-Hernández C, Soto GE (2015) Hierarchical spatial decisions in fragmented landscapes: modeling the foraging movements of woodpeckers. Ecol Model 300:114–122

  74. Vergara PM, Schlatter RP (2004) Magellanic woodpecker (Campephilus magellanicus) abundance and foraging in Tierra del Fuego, Chile. J Ornithol 145:343–351

  75. Vergara PM, Soto GE, Moreira-Arce D, Rodewald AD, Meneses LO, Perez-Hernandez CG (2016) Foraging behaviour in magellanic woodpeckers is consistent with a multi-scale assessment of tree quality. PLoS One 11(7):e0159096

  76. Waser LT, Küchler M, Jütte K, Stampfer T (2014) Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality. Remote Sens 6:4515–4545

  77. Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373

  78. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

  79. Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca Raton

  80. Yang X, Tang J, Mustard J (2014) Beyond leaf color: comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest. J Geophys Res 119:181–191

  81. Zuñiga-Reinoso A (2013) Review of the Longhorns (Coleoptera: cerambycidae) from Magellanes region: illustrated checklist. Anales Instituto Patagonia (Chile) 41:53–59

Download references


This study was supported by FONDECYT Grant 1131133. GES acknowledges Wesley Hochachka from the Cornell Lab of Ornithology and Mario Nazar for their technical support.

Author information

Correspondence to Pablo M. Vergara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vergara, P.M., Meneses, L.O., Grez, A.A. et al. Occupancy pattern of a long-horned beetle in a variegated forest landscape: linkages between tree quality and forest cover across spatial scales. Landscape Ecol 32, 279–293 (2017).

Download citation


  • Occupancy
  • Cross-scale interactions
  • Tree quality
  • Subpolar forest