Skip to main content

Advertisement

Log in

The sounds of silence: regime shifts impoverish marine soundscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Regime shifts are well known for driving penetrating ecological change, yet we do not recognise the consequences of these shifts much beyond species diversity and productivity. Sound represents a multidimensional space that carries decision-making information needed for some dispersing species to locate resources and evaluate their quantity and quality.

Objectives

Here we assessed the effect of regime shifts on marine soundscapes, which we propose has the potential function of strengthening the positive or negative feedbacks that mediate ecosystem shifts.

Methods

We tested whether biologically relevant cues are altered by regime shifts in kelp forests and seagrass systems and how specific such shifted soundscapes are to the type of driver; i.e. local pollution (eutrophication) vs. global change (ocean acidification).

Results

Here, we not only provide the first evidence for regime-shifted soundscapes, but also reveal that the modified cues of shifted ecosystems are similar regardless of spatial scale and type of environmental driver. Importantly, biological sounds can act as functional cues for orientation by dispersing larvae, and observed shifts in soundscape loudness may alter this function.

Conclusions

These results open the question as to whether shifted soundscapes provide a functional role in mediating the positive or negative feedbacks that govern the arrival of species associated with driving change or stasis in ecosystem state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Au WW, Hastings MC (2008) Principles of marine bioacoustics. Springer, New York

    Book  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833

    Article  CAS  PubMed  Google Scholar 

  • Boatta F, D’Alessandro W, Gagliano A, Liotta M, Milazzo M, Rodolfo-Metalpa R, Hall-Spencer JM, Parello F (2013) Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar Pollut Bull 73(2):485–494

    Article  CAS  PubMed  Google Scholar 

  • Botero CA, Boogert NJ, Vehrencamp SL, Lovette IJ (2009) Climatic patterns predict the elaboration of song displays in mockingbirds. Curr Biol 19(13):1151–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman T, Smith A (2015) Effect of climate change on crustose coralline algae at a temperate vent site, White Island New Zealand. Mar Freshw Res 66(4):360–370

    Article  Google Scholar 

  • Bryars S, Collings G, Miller D (2011) Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar Ecol Prog Ser 441:89–103

    Article  CAS  Google Scholar 

  • Buchanan KL, Spencer K, Goldsmith A, Catchpole C (2003) Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc R Soc Lond B 270(1520):1149–1156

    Article  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443(7114):989–992

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9(3):751–771

    Article  Google Scholar 

  • Connell SD, Ghedini G (2015) Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol Evol 30(9):513–515

    Article  PubMed  Google Scholar 

  • Connell SD, Irving AD (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J Biogeogr 35(9):1608–1621

    Article  Google Scholar 

  • Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD (2013) The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. R Soc Philos Trans Biol Sci 368(1627):20120442

    Article  Google Scholar 

  • Connell S, Russell B, Turner D, Shepherd SA, Kildea T, Miller D, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol-Prog Ser 360:63–72

    Article  Google Scholar 

  • Copertino M, Connell SD, Cheshire A (2005) The prevalence and production of turf-forming algae on a temperate subtidal coast. Phycologia 44(3):241–248

    Article  Google Scholar 

  • Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345(6199):892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13(1):68–75

    Article  PubMed  Google Scholar 

  • Farina A, Lattanzi E, Malavasi R, Pieretti N, Piccioli L (2011) Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landscape Ecol 26(9):1257–1267

    Article  Google Scholar 

  • Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26(3):553–558

    Article  Google Scholar 

  • Fowler-Walker MJ, Connell SD, Gillanders BM (2005) To what extent do geographic and associated environmental variables correlate with kelp morphology across temperate Australia? Mar Freshw Res 56(6):877–887

    Article  Google Scholar 

  • Ghedini G, Russell BD, Connell SD (2015) Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Lett 18(2):182–187

    Article  PubMed  Google Scholar 

  • Gorman D, Russell BD, Connell SD (2009) Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol Appl 19(5):1114–1126

    Article  PubMed  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99

    Article  CAS  PubMed  Google Scholar 

  • Hart D (2013) Seagrass extent change 2007-13-Adelaide coastal waters. DEWNR Technical note 2013/07. Government of South Australia, through Department of Environment, Water and Natural Resources, Adelaide

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huijbers CM, Nagelkerken I, Lössbroek PAC, Schulten IE, Siegenthaler A, Holderied MW, Simpson SD (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93(1):46–55

    Article  PubMed  Google Scholar 

  • Ilyina T, Zeebe RE, Brewer PG (2010) Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions. Nat Geosci 3(1):18–22

    Article  CAS  Google Scholar 

  • Johnson MW, Everest FA, Young RW (1947a) The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea. Biol Bull 93(2):122–138

    Article  CAS  PubMed  Google Scholar 

  • Johnson MW, Everest FA, Young RW (1947b) The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea. Biol Bull 93(2):122–138

    Article  CAS  PubMed  Google Scholar 

  • Kennedy E, Holderied M, Mair J, Guzman H, Simpson S (2010) Spatial patterns in reef-generated noise relate to habitats and communities: evidence from a Panamanian case study. J Exp Mar Biol Ecol 395(1):85–92

    Article  Google Scholar 

  • Kerrison P, Hall-Spencer JM, Suggett DJ, Hepburn LJ, Steinke M (2011) Assessment of pH variability at a coastal CO 2 vent for ocean acidification studies. Estuar Coast Shelf Sci 94(2):129–137

    Article  CAS  Google Scholar 

  • Knowlton RE, Moulton JM (1963) Sound production in the snapping shrimps Alpheus (Crangon) and Synalpheus. Biol Bull 125(2):311–331

    Article  Google Scholar 

  • Krause B (1987) Bioacoustics, habitat ambience in ecological balance. Whole Earth Rev 57:14–18

    Google Scholar 

  • Laiolo P, Vögeli M, Serrano D, Tella JL (2008) Song diversity predicts the viability of fragmented bird populations. PLoS One 3(3):e1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillis A, Bohnenstiehl DR, Eggleston DB (2015) Soundscape manipulation enhances larval recruitment of a reef-building mollusk. PeerJ 3:e999

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillis A, Eggleston DB, Bohnenstiehl D (2014) Estuarine soundscapes: distinct acoustic characteristics of oyster reefs compared to soft-bottom habitats. Mar Ecol Prog Ser 505:1–17

    Article  Google Scholar 

  • Ling S, Johnson C, Frusher S, Ridgway K (2009) Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Natl Acad Sci USA 106(52):22341–22345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241

    Article  CAS  Google Scholar 

  • Merchant ND, Fristrup KM, Johnson MP, Tyack PL, Witt MJ, Blondel P, Parks SE (2015) Measuring acoustic habitats. Methods Ecol Evol 6(3):257–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery JC, Jeffs A, Simpson SD, Meekan M, Tindle C (2006) Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv Mar Biol 51:143–196

    Article  PubMed  Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106(6):1848–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelkerken I, Russell BD, Gillanders BM, Connell SD (2016) Ocean acidification alters fish populations indirectly through habitat modification. Nat Clim Change 6(1):89–93

    Article  CAS  Google Scholar 

  • Narins PM, Meenderink SW (2014) Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proc R Soc Lond B 281(1783):20140401

    Article  Google Scholar 

  • Nedelec SL, Simpson SD, Holderied M, Radford AN, Lecellier G, Radford C, Lecchini D (2015) Soundscapes and living communities in coral reefs: temporal and spatial variation. Mar Ecol Prog Ser 524:125–135

    Article  Google Scholar 

  • Neverauskas V (1987) Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar Pollut Bull 18(4):158–164

    Article  CAS  Google Scholar 

  • Parmentier E, Berten L, Rigo P, Aubrun F, Nedelec SL, Simpson SD, Lecchini D (2015) The influence of various reef sounds on coral-fish larvae behaviour. J Fish Biol 86(5):1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Piercy JJ, Codling EA, Hill AJ, Smith DJ, Simpson SD (2014) Habitat quality affects sound production and likely distance of detection on coral reefs. Mar Ecol Prog Ser 516:35–47

    Article  Google Scholar 

  • Pijanowski BC, Farina A, Gage SH, Dumyahn SL, Krause BL (2011) What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecol 26(9):1213–1232

    Article  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1):25–36

    Article  PubMed  Google Scholar 

  • Reeder DB, Chiu C-S (2010) Ocean acidification and its impact on ocean noise: phenomenology and analysis. J Acoust Soc Am 128(3):EL137–EL143

    Article  CAS  PubMed  Google Scholar 

  • Rossi T, Connell SD, Nagelkerken I (2016a) Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world’s noisiest marine invertebrate. Proc R Soc Lond B 283(1826):20153046

    Article  Google Scholar 

  • Rossi T, Nagelkerken I, Pistevos JCA, Connell SD (2016b) Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol Lett 12(1):20150937

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi T, Nagelkerken I, Simpson SD, Pistevos JCA, Watson S-A, Merillet L, Fraser P, Munday PL, Connell SD (2015) Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proc R Soc Lond B 282(1821):20151954

    Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18(12):648–656

    Article  Google Scholar 

  • Servick K (2014) Eavesdropping on ecosystems. Science 343(6173):834–837

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Meekan M, Montgomery J, McCauley R, Jeffs A (2005) Homeward sound. Science 308(5719):221

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7(6):917–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson SD, Piercy JJ, King J, Codling EA (2013) Modelling larval dispersal and behaviour of coral reef fishes. Ecol Complex 16:68–76

    Article  Google Scholar 

  • Slabbekoorn H, Bouton N (2008) Soundscape orientation: a new field in need of sound investigation. Anim Behav 76(4):e5–e8

    Article  Google Scholar 

  • Staaterman E, Paris CB, DeFerrari HA, Mann DA, Rice AN, D’Alessandro EK (2014) Celestial patterns in marine soundscapes. Mar Ecol Prog Ser 508:17–32

    Article  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Stanley JA, Hesse J, Hinojosa IA, Jeffs AG (2015) Inducers of settlement and moulting in post-larval spiny lobster. Oecologia 178(3):685-697

    Article  PubMed  Google Scholar 

  • Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3(12):e4065

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiel M, Vásquez JA (2000) Are kelp holdfasts islands on the ocean floor?—indication for temporarily closed aggregations of peracarid crustaceans. Island, ocean and deep-sea biology. Springer, Dordrecht, pp 45–54

    Chapter  Google Scholar 

  • Tucker D, Gage SH, Williamson I, Fuller S (2014) Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecol 29(4):745–758

    Article  Google Scholar 

  • Vermeij MJA, Marhaver KL, Huijbers CM, Nagelkerken I, Simpson SD (2010) Coral larvae move toward reef sounds. PLoS One 5(5):e10660

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker D, McComb A (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25(5):191–195

    Article  Google Scholar 

  • Walker BH (1993) Rangeland ecology: understanding and managing change. Ambio 22:80-87

    Google Scholar 

Download references

Acknowledgments

This study was supported by Australian Research Council (ARC) Future Fellowship to I.N. (Grant No. FT120100183) and a grant from the Environment Institute (The University of Adelaide). S.D.C. was supported by an ARC Future Fellowship (Grant No. FT0991953).

Author contributions

All authors contributed to the design of the study, collection of the data, and writing of the article. T.R. analysed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Nagelkerken.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, T., Connell, S.D. & Nagelkerken, I. The sounds of silence: regime shifts impoverish marine soundscapes. Landscape Ecol 32, 239–248 (2017). https://doi.org/10.1007/s10980-016-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0439-x

Keywords

Navigation