Landscape Ecology

, Volume 32, Issue 2, pp 239–248 | Cite as

The sounds of silence: regime shifts impoverish marine soundscapes

Research Article

Abstract

Context

Regime shifts are well known for driving penetrating ecological change, yet we do not recognise the consequences of these shifts much beyond species diversity and productivity. Sound represents a multidimensional space that carries decision-making information needed for some dispersing species to locate resources and evaluate their quantity and quality.

Objectives

Here we assessed the effect of regime shifts on marine soundscapes, which we propose has the potential function of strengthening the positive or negative feedbacks that mediate ecosystem shifts.

Methods

We tested whether biologically relevant cues are altered by regime shifts in kelp forests and seagrass systems and how specific such shifted soundscapes are to the type of driver; i.e. local pollution (eutrophication) vs. global change (ocean acidification).

Results

Here, we not only provide the first evidence for regime-shifted soundscapes, but also reveal that the modified cues of shifted ecosystems are similar regardless of spatial scale and type of environmental driver. Importantly, biological sounds can act as functional cues for orientation by dispersing larvae, and observed shifts in soundscape loudness may alter this function.

Conclusions

These results open the question as to whether shifted soundscapes provide a functional role in mediating the positive or negative feedbacks that govern the arrival of species associated with driving change or stasis in ecosystem state.

Keywords

Regime shift Kelp Seagrass Soundscape Snapping shrimps Orientation Population replenishment Ocean acidification Climate change 

Supplementary material

10980_2016_439_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 156 kb)

References

  1. Au WW, Hastings MC (2008) Principles of marine bioacoustics. Springer, New YorkCrossRefGoogle Scholar
  2. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833CrossRefPubMedGoogle Scholar
  3. Boatta F, D’Alessandro W, Gagliano A, Liotta M, Milazzo M, Rodolfo-Metalpa R, Hall-Spencer JM, Parello F (2013) Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar Pollut Bull 73(2):485–494CrossRefPubMedGoogle Scholar
  4. Botero CA, Boogert NJ, Vehrencamp SL, Lovette IJ (2009) Climatic patterns predict the elaboration of song displays in mockingbirds. Curr Biol 19(13):1151–1155CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brinkman T, Smith A (2015) Effect of climate change on crustose coralline algae at a temperate vent site, White Island New Zealand. Mar Freshw Res 66(4):360–370CrossRefGoogle Scholar
  6. Bryars S, Collings G, Miller D (2011) Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar Ecol Prog Ser 441:89–103CrossRefGoogle Scholar
  7. Buchanan KL, Spencer K, Goldsmith A, Catchpole C (2003) Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc R Soc Lond B 270(1520):1149–1156CrossRefGoogle Scholar
  8. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443(7114):989–992CrossRefPubMedGoogle Scholar
  9. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9(3):751–771CrossRefGoogle Scholar
  10. Connell SD, Ghedini G (2015) Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol Evol 30(9):513–515CrossRefPubMedGoogle Scholar
  11. Connell SD, Irving AD (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J Biogeogr 35(9):1608–1621CrossRefGoogle Scholar
  12. Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD (2013) The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. R Soc Philos Trans Biol Sci 368(1627):20120442CrossRefGoogle Scholar
  13. Connell S, Russell B, Turner D, Shepherd SA, Kildea T, Miller D, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol-Prog Ser 360:63–72CrossRefGoogle Scholar
  14. Copertino M, Connell SD, Cheshire A (2005) The prevalence and production of turf-forming algae on a temperate subtidal coast. Phycologia 44(3):241–248CrossRefGoogle Scholar
  15. Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345(6199):892–897CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13(1):68–75CrossRefPubMedGoogle Scholar
  17. Farina A, Lattanzi E, Malavasi R, Pieretti N, Piccioli L (2011) Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landscape Ecol 26(9):1257–1267CrossRefGoogle Scholar
  18. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26(3):553–558CrossRefGoogle Scholar
  19. Fowler-Walker MJ, Connell SD, Gillanders BM (2005) To what extent do geographic and associated environmental variables correlate with kelp morphology across temperate Australia? Mar Freshw Res 56(6):877–887CrossRefGoogle Scholar
  20. Ghedini G, Russell BD, Connell SD (2015) Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Lett 18(2):182–187CrossRefPubMedGoogle Scholar
  21. Gorman D, Russell BD, Connell SD (2009) Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol Appl 19(5):1114–1126CrossRefPubMedGoogle Scholar
  22. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99CrossRefPubMedGoogle Scholar
  23. Hart D (2013) Seagrass extent change 2007-13-Adelaide coastal waters. DEWNR Technical note 2013/07. Government of South Australia, through Department of Environment, Water and Natural Resources, AdelaideGoogle Scholar
  24. Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Huijbers CM, Nagelkerken I, Lössbroek PAC, Schulten IE, Siegenthaler A, Holderied MW, Simpson SD (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93(1):46–55CrossRefPubMedGoogle Scholar
  26. Ilyina T, Zeebe RE, Brewer PG (2010) Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions. Nat Geosci 3(1):18–22CrossRefGoogle Scholar
  27. Johnson MW, Everest FA, Young RW (1947a) The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea. Biol Bull 93(2):122–138CrossRefPubMedGoogle Scholar
  28. Johnson MW, Everest FA, Young RW (1947b) The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea. Biol Bull 93(2):122–138CrossRefPubMedGoogle Scholar
  29. Kennedy E, Holderied M, Mair J, Guzman H, Simpson S (2010) Spatial patterns in reef-generated noise relate to habitats and communities: evidence from a Panamanian case study. J Exp Mar Biol Ecol 395(1):85–92CrossRefGoogle Scholar
  30. Kerrison P, Hall-Spencer JM, Suggett DJ, Hepburn LJ, Steinke M (2011) Assessment of pH variability at a coastal CO 2 vent for ocean acidification studies. Estuar Coast Shelf Sci 94(2):129–137CrossRefGoogle Scholar
  31. Knowlton RE, Moulton JM (1963) Sound production in the snapping shrimps Alpheus (Crangon) and Synalpheus. Biol Bull 125(2):311–331CrossRefGoogle Scholar
  32. Krause B (1987) Bioacoustics, habitat ambience in ecological balance. Whole Earth Rev 57:14–18Google Scholar
  33. Laiolo P, Vögeli M, Serrano D, Tella JL (2008) Song diversity predicts the viability of fragmented bird populations. PLoS One 3(3):e1822CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lillis A, Bohnenstiehl DR, Eggleston DB (2015) Soundscape manipulation enhances larval recruitment of a reef-building mollusk. PeerJ 3:e999CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lillis A, Eggleston DB, Bohnenstiehl D (2014) Estuarine soundscapes: distinct acoustic characteristics of oyster reefs compared to soft-bottom habitats. Mar Ecol Prog Ser 505:1–17CrossRefGoogle Scholar
  36. Ling S, Johnson C, Frusher S, Ridgway K (2009) Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Natl Acad Sci USA 106(52):22341–22345CrossRefPubMedPubMedCentralGoogle Scholar
  37. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241CrossRefGoogle Scholar
  38. Merchant ND, Fristrup KM, Johnson MP, Tyack PL, Witt MJ, Blondel P, Parks SE (2015) Measuring acoustic habitats. Methods Ecol Evol 6(3):257–265CrossRefPubMedPubMedCentralGoogle Scholar
  39. Montgomery JC, Jeffs A, Simpson SD, Meekan M, Tindle C (2006) Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv Mar Biol 51:143–196CrossRefPubMedGoogle Scholar
  40. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106(6):1848–1852CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nagelkerken I, Russell BD, Gillanders BM, Connell SD (2016) Ocean acidification alters fish populations indirectly through habitat modification. Nat Clim Change 6(1):89–93CrossRefGoogle Scholar
  42. Narins PM, Meenderink SW (2014) Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proc R Soc Lond B 281(1783):20140401CrossRefGoogle Scholar
  43. Nedelec SL, Simpson SD, Holderied M, Radford AN, Lecellier G, Radford C, Lecchini D (2015) Soundscapes and living communities in coral reefs: temporal and spatial variation. Mar Ecol Prog Ser 524:125–135CrossRefGoogle Scholar
  44. Neverauskas V (1987) Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar Pollut Bull 18(4):158–164CrossRefGoogle Scholar
  45. Parmentier E, Berten L, Rigo P, Aubrun F, Nedelec SL, Simpson SD, Lecchini D (2015) The influence of various reef sounds on coral-fish larvae behaviour. J Fish Biol 86(5):1507–1518CrossRefPubMedGoogle Scholar
  46. Piercy JJ, Codling EA, Hill AJ, Smith DJ, Simpson SD (2014) Habitat quality affects sound production and likely distance of detection on coral reefs. Mar Ecol Prog Ser 516:35–47CrossRefGoogle Scholar
  47. Pijanowski BC, Farina A, Gage SH, Dumyahn SL, Krause BL (2011) What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecol 26(9):1213–1232CrossRefGoogle Scholar
  48. Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1):25–36CrossRefPubMedGoogle Scholar
  49. Reeder DB, Chiu C-S (2010) Ocean acidification and its impact on ocean noise: phenomenology and analysis. J Acoust Soc Am 128(3):EL137–EL143CrossRefPubMedGoogle Scholar
  50. Rossi T, Connell SD, Nagelkerken I (2016a) Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world’s noisiest marine invertebrate. Proc R Soc Lond B 283(1826):20153046CrossRefGoogle Scholar
  51. Rossi T, Nagelkerken I, Pistevos JCA, Connell SD (2016b) Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol Lett 12(1):20150937CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rossi T, Nagelkerken I, Simpson SD, Pistevos JCA, Watson S-A, Merillet L, Fraser P, Munday PL, Connell SD (2015) Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proc R Soc Lond B 282(1821):20151954CrossRefGoogle Scholar
  53. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18(12):648–656CrossRefGoogle Scholar
  54. Servick K (2014) Eavesdropping on ecosystems. Science 343(6173):834–837CrossRefPubMedGoogle Scholar
  55. Simpson SD, Meekan M, Montgomery J, McCauley R, Jeffs A (2005) Homeward sound. Science 308(5719):221CrossRefPubMedGoogle Scholar
  56. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7(6):917–920CrossRefPubMedPubMedCentralGoogle Scholar
  57. Simpson SD, Piercy JJ, King J, Codling EA (2013) Modelling larval dispersal and behaviour of coral reef fishes. Ecol Complex 16:68–76CrossRefGoogle Scholar
  58. Slabbekoorn H, Bouton N (2008) Soundscape orientation: a new field in need of sound investigation. Anim Behav 76(4):e5–e8CrossRefGoogle Scholar
  59. Staaterman E, Paris CB, DeFerrari HA, Mann DA, Rice AN, D’Alessandro EK (2014) Celestial patterns in marine soundscapes. Mar Ecol Prog Ser 508:17–32CrossRefGoogle Scholar
  60. Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766CrossRefGoogle Scholar
  61. Stanley JA, Hesse J, Hinojosa IA, Jeffs AG (2015) Inducers of settlement and moulting in post-larval spiny lobster. Oecologia 178(3):685-697CrossRefPubMedGoogle Scholar
  62. Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3(12):e4065CrossRefPubMedPubMedCentralGoogle Scholar
  63. Thiel M, Vásquez JA (2000) Are kelp holdfasts islands on the ocean floor?—indication for temporarily closed aggregations of peracarid crustaceans. Island, ocean and deep-sea biology. Springer, Dordrecht, pp 45–54CrossRefGoogle Scholar
  64. Tucker D, Gage SH, Williamson I, Fuller S (2014) Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecol 29(4):745–758CrossRefGoogle Scholar
  65. Vermeij MJA, Marhaver KL, Huijbers CM, Nagelkerken I, Simpson SD (2010) Coral larvae move toward reef sounds. PLoS One 5(5):e10660CrossRefPubMedPubMedCentralGoogle Scholar
  66. Walker D, McComb A (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25(5):191–195CrossRefGoogle Scholar
  67. Walker BH (1993) Rangeland ecology: understanding and managing change. Ambio 22:80-87Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tullio Rossi
    • 1
  • Sean D. Connell
    • 1
  • Ivan Nagelkerken
    • 1
  1. 1.Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideAustralia

Personalised recommendations