Skip to main content

Advertisement

Log in

A network model framework for prioritizing wetland conservation in the Great Plains

Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Playa wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.

Objective

To develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.

Methods

We examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.

Results

We identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).

Conclusions

Our findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Albanese G, Davis CA (2013) Broad-scale relationships between shorebirds and landscapes in the Southern Great Plains. Auk 130:88–97

    Article  Google Scholar 

  • Albanese G, Davis CA (2015) Characteristics within and around stopover wetlands used by migratory shorebirds: is the neighborhood important? Condor 117:328–340

    Article  Google Scholar 

  • Albanese G, Davis CA, Compton BW (2012) Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation. Landscape Ecol 27:1465–1479

    Article  Google Scholar 

  • Albert R, Jeong H, Barab’asi A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Anderson JT, Smith LM (2000) Invertebrate response to moist-soil management of playa wetlands. Ecol Appl 10:550–558

    Article  Google Scholar 

  • Barrat A, Barthe’lemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Batagel V, Mrvar A (2014) Pajek XXL: program for very large network analysis (computer software). http://vlado.fmf.uni-lj.si/pub/networks/pajek/

  • Becker CG, Fonseca CB, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Bodin O, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landscape Ecol 22:31–44

    Article  Google Scholar 

  • Brandes U, Erlebach T (2005) Network analysis: methodological foundations. Springer, Berlin

    Book  Google Scholar 

  • Breiman L, Friedman JH, Stone CJ, Olsen RA (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Buler JJ, Moore FR, Woltmann S (2007) A multi-scale examination of stopover habitat use by birds. Ecology 88:1789–1802

    Article  PubMed  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  • Burris L, Skagen SK (2013) Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940–2100. Clim Change 117:69–83

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison shoppers guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • Calerqeau P, Burel F (1997) The role of spatio-temporal patch connectivity at the landscape level: an example in a bird distribution. Landsc Urban Plan 38:37–43

    Article  Google Scholar 

  • Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    Article  CAS  PubMed  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev 70:66111–66115

    Google Scholar 

  • Cohen R, Erez K, Ben Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85:4626–4628

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    Article  CAS  PubMed  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Newroth PR (1993) Restoration and management of lakes and reservoirs. Lewis, Boca Raton

    Google Scholar 

  • Covich AP, Fritz SC, Lamb PJ, Marzolf RD, Matthews WJ, Poiani KA, Prepas EE, Richman MB, Winter TC (1997) Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrol Process 11:993–1021

    Article  Google Scholar 

  • Crooks KR, Sanjayan MA (2006) Conservation connectivity: maintaining connections for nature. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Dale MRT, Fortin M-J (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  • Emmeert-Streib F (2011) A brief introduction to complex networks and their analysis. In: Dehmer M (ed) Structural analysis of complex networks. Springer Science, New York, pp 1–26

    Chapter  Google Scholar 

  • ESRI (2011) ArcGIS (10). Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Estrada E, Bodin O (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825

    Article  PubMed  Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100:125–136

    Article  Google Scholar 

  • Fish EB, Atkinson EL, Mollhagen TR, Shanks CH, Brenton CM (1998) Playa lakes digital database for the Texas portion of the Playa Lakes Joint Venture region. Technical Publication #T-9-813, Texas Tech University, Lubbock

    Google Scholar 

  • Foltete J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Modell Softw 38:316–327

    Article  Google Scholar 

  • Fortuna MA, Gomez-Rodriguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in a stochastic environment. Proc R Soc Lond B 273:1429–1434

    Article  Google Scholar 

  • Garbrecht JD, Starks PJ, Steiner JL (2006) The under-appreciated climate factor in CEAP a guest editorial written by leading conservation professionals. J Soil Water Conserv 61:110A–112A

    Google Scholar 

  • Ghioca DM, Smith LM (2008) Population structure of Ambystoma tigrinum mavortium in playa wetlands: landuse influence and variations in polymorphism. Copeia 2008:286–293

    Article  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason RA, Euliss NH, Hubbard DE, Duffy WG (2003) Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23:26–34

    Article  Google Scholar 

  • Gray MJ, Smith LM (2005) Influence of landuse on post metamorphic body size of playa lake amphibians. J Wildl Manag 69:515–524

    Article  Google Scholar 

  • Gray MJ, Smith LM, Brenes R (2004a) Effects of agricultural cultivation on demographics of Southern High Plains amphibians. Conserv Biol 18:1368–1377

    Article  Google Scholar 

  • Gray MJ, Smith LM, Leyva RI (2004b) Influence of agricultural landscape structure on a Southern High Plains, USA, amphibian assemblage. Landscape Ecol 19:719–729

    Article  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics—brief-history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Haukos DA, Smith LM (1993) Moist soil management of playa lakes for migrating and wintering ducks. Wildl Soc Bull 21:288–298

    Google Scholar 

  • Haukos DA, Smith LM (1994) The importance of playa wetlands to biodiversity of the Southern High Plains. Landsc Urban Plan 28:83–98

    Article  Google Scholar 

  • Haukos DA, Smith LM (2003) Past and future impacts of wetland regulations to playa ecology in the Southern Great Plains. Wetlands 23:577–589

    Article  Google Scholar 

  • Hayhoe K, Wuebbles D (2007) Climate change in the Midwest: projections of future temperature and precipitation. A technical report on midwest climate impacts for the union of concerned scientists. http://www.ucsusa.org/assets/documents/global_warming/midwest-climate-impacts.pdf

  • Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to the basics. J Appl Ecol 46:964–969

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jasny BR, Zahn LM, Marshall E (2009) Connections. Science 325:405

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219

    Article  CAS  Google Scholar 

  • Johnson LA, Haukos DA, Smith LM, McMurry ST (2011a) Loss and modification of Southern Great Plains playas. J Environ Manag 112:275–283

    Article  Google Scholar 

  • Johnson WP, Rice MB, Haukos DA, Thorpe P (2011b) Factors influencing the occurrence of inundated playa wetlands during winter on the Texas High Plains. Wetlands 31:1287–1296

    Article  Google Scholar 

  • Kovar P (2011) Decompositions and factorizations of complete graphs. In: Dehmer M (ed) Structural analysis of complex networks. Springer Science, New York, pp 169–196

    Chapter  Google Scholar 

  • Laita A, Kotiaho JS, Monkkonen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity. Landscape Ecol 26:951–967

    Article  Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M (ed) Lectures on mathematics in the life sciences. American Mathematical Society, Providence, pp 77–107

    Google Scholar 

  • Li HB, Wu JG (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399

    Article  Google Scholar 

  • Luo HR, Smith LM, Allen BL, Haukos DA (1997) Effects of sedimentation on playa wetland volume. Ecol Appl 7:247–252

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Matthews JH (2008) Anthropogenic climate change in the Playa Lakes Joint Venture region: understanding impacts, discerning trends and developing responses. PLJV technical report, Lafayette

  • McIntyre NE, Strauss RA (2013) A new, multi-scaled graph visualization approach: an example within the playa wetland network of the Great Plains. Landscape Ecol 28:769–782

    Article  Google Scholar 

  • McRae B, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Nat Acad Sci USA 104:19885–19890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782

    Article  PubMed  Google Scholar 

  • Minor ES, Urban DL (2008) A graph theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48:1543–1547

    Article  Google Scholar 

  • Nelson RW, Logan WJ, Weller EC (1983) Playa wetlands and wildlife on the Southern Great Plains: a characterization of habitat. USFWS technical report, FWS/OBS-83/29

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev 69:026113

    CAS  Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Palla G, Der’enyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  • Playa Lakes Joint Venture (PLJV) (2013) Probable playa database version 4 (web application). http://www.pljv.org/partners/maps-data/playa-maps

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    Article  PubMed  Google Scholar 

  • Ruiz LJ, Parikh NN, Heintzman LJ, Collins SD, Starr SM, Wright CK, Henebry GM, van Gestel N, McIntyre NE (2014) Dynamic connectivity of temporary wetlands in the Southern Great Plains. Landscape Ecol 29:507–516

    Article  Google Scholar 

  • SAS (2010) Statistical Analysis System release 9.3 edition. SAS Institute Inc., Cary

    Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscapes conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in a landscape. Ecography 33:523–537

    Google Scholar 

  • Shiffrin RM, Borner K (2004) Mapping knowledge domains. Proc Natl Acad Sci USA 101:5183–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LM (2003) Playas of the Great Plains. University of Texas Press, Austin

    Google Scholar 

  • Smith LM, Haukos DA (2002) Floral diversity in relation to playa wetland area and watershed disturbance. Conserv Biol 16:964–974

    Article  Google Scholar 

  • Smith LM, Haukos DA, McMurry S (2012) High plains playas. In: Batzer D, Baldwin A (eds) Wetland habitats of North America: ecology and conservation concerns. University of California Press, Berkeley, pp 299–311

    Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to P theory. Taylor and Francis Press, London

    Google Scholar 

  • Tilman D, Fargione J, Wolfe B, Antonio CD, Dobson A, Howarth RW, Schindler D, Schlesinger W, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Tsai JS, Venne LS, McMurry ST, Smith LM (2007) Influences of land use and wetland characteristics on water loss rates and hydroperiods of playa in the Southern High Plains, USA. Wetlands 27:683–692

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273

    Article  PubMed  Google Scholar 

  • Vicsek T (2002) The big picture. Nature 418:131

    Article  CAS  PubMed  Google Scholar 

  • Webb EB, Smith LM, Vrtiska MP, LaGrange TG (2010) Effects of local and landscape variables on wetland bird habitat use during migration through the Rainwater Basin. J Wildl Manag 74:109–119

    Article  Google Scholar 

  • Wishart DJ (2004) Encyclopedia of the Great Plains. University of Nebraska Press, Lincoln

    Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Wright CK (2010) Spatiotemporal dynamics of prairie wetland networks: power-law scaling and implications for conservation planning. Ecology 91:1924–1930

    Article  PubMed  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by U.S. Fish and Wildlife Service, Great Plains Landscape Conservation Cooperative research and National Science Foundation Macrosystems (1240646) Grants administered through the U.S. Geological Survey Fort Collins Science Center and Kansas Cooperative Fish & Wildlife Research Unit. We gratefully acknowledge additional support provided by the Division of Biology at Kansas State University, S. K. Skagen, D. Hamilton, D. Manier, and L. Burris. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Albanese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albanese, G., Haukos, D.A. A network model framework for prioritizing wetland conservation in the Great Plains. Landscape Ecol 32, 115–130 (2017). https://doi.org/10.1007/s10980-016-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0436-0

Keywords

Navigation