Skip to main content

Advertisement

Log in

From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Converting monocultures to mixed-species stands is thought to be a promising approach to increase forest productivity and resilience, while additionally providing other ecosystem goods and services (EGS). However, the importance of tree species composition and structure remains unclear, particularly beyond the stand scale due to the difficulty of conducting comprehensive, long-term experiments.

Objectives

To compare the ability of different tree species mixtures to provide various EGS at the landscape scale.

Methods

We used a dynamic forest landscape model to simulate all possible combinations of dominant tree species for two landscapes; a high-elevation alpine region (Dischma valley, Switzerland) and a lowland valley (Mt. Feldberg, Germany). We evaluated multiple EGS, including protection from gravitational hazards, aboveground biomass, and habitat quality, and examined trade-offs and synergies between them.

Results

Mixed-species forests were usually better in providing multiple EGS, although monocultures were often best for single EGS. The simulation results also demonstrated how changing environmental conditions along an elevational gradient had a strong impact on the structure of different species combinations and therefore on the provisioning of EGS.

Conclusion

Tree species diversity alone is not a good predictor of multifunctionality. Mixtures should be selected based on local environmental conditions, complementary functional traits, and the ability to provide the EGS of interest. Although our work focused on current climatic conditions, we discuss how the modelling framework could be employed to consider the impacts of climate change and disturbances to improve our understanding of how mixed-species stands could be used to cope with these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agestam E, Karlsson M, Nilsson U (2006) Mixed forests as a part of sustainable forestry in Southern Sweden. J Sustain For 21:101–117

    Article  Google Scholar 

  • BAFU (2015) Forest report 2015. Condition and use of Swiss forests. Federal Office for the Environment, Bern, Swiss Federal Institute WSL, Birmensdorf

  • Bebi P, Kienast F, Schönenberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. For Ecol Manag 145(1–2):3–14

    Article  Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12(12):1394–1404

    Article  PubMed  Google Scholar 

  • Brang P, Schönenberger W, Frehner M, Schwitter R, Thormann JJ, Wasser B (2006) Management of protection forests in the European Alps: an overview. For Snow Landsc Res 80:23–44

    Google Scholar 

  • Brans J-P, Mareschal B (2005) Promethee methods. Springer, New York, pp 163–186

    Google Scholar 

  • Briner S, Elkin C, Huber R (2013) Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J Environ Manag 129:414–422

    Article  Google Scholar 

  • Brokaw NVL, Lent RA (1999) Vertical structure. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 373–399

    Chapter  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Chang 51:259–305

    Article  Google Scholar 

  • Cools N, De Voss B, Fischer R, San-Miguel-Ayanz J, Camia A, Granke O, Hiederer R, Lorenz M, Montanarella L, Mues V, Nagel H-D, Poker J, Scheuschner T, Schlutow A (2011) Criterion 2: Maintenance of forest ecosystem health and vitality. State of Europe’s Forests, Status and trends in sustainable forest management in Europe. FOREST EUROPE, UNECE and FAO

    Google Scholar 

  • Deutsche Bodenkundliche Gesellschaft (1979) Exkursionsführer zur Jahrestagung 1979 in Freiburg i. Br

  • DWD (2014) Deutscher Wetterdienst, Germany. https://werdis.dwd.de. Accessed 12 July 2014

  • Dorren L, Berger F, Métral R (2005) Der optimale Schutzwald gegen Steinschlag. Wald und Holz 11:2–4

    Google Scholar 

  • Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-Offs. Ecol Soc 17(4):50

    Google Scholar 

  • Duveneck MJ, Scheller RM, White MA, Handler SD, Ravenscroft C (2014) Climate change effects on northern Great Lake (USA) forests: a case for preserving diversity. Ecosphere 5(2):1–26

    Article  Google Scholar 

  • Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2°C warmer world is not safe for ecosystem services in the European Alps. Global Change Biol 19:1827–1840

    Article  Google Scholar 

  • Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manag 260:939–947

    Article  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292

    Article  Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manag 304:233–242

    Article  Google Scholar 

  • Franklin JF, Spies TA (1991) Composition, function, and structure of old-growth Douglas-Fir forests. USDA For Serv Tech Rep PNW 285:71–72

    Google Scholar 

  • Frehner M, Schwitter R, Wasser B (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion Vollzug Umwelt. Bundesamt für Umwelt,Wald und Landschaft (BUWAL). Bern

  • Frivold LH, Frank J (2002) Growth of mixed birch-coniferous stands in relation to pure coniferous stands at similar sites in south-eastern Norway. Scand J For Res 17:139–149

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature communications 4:1340

    Article  PubMed  PubMed Central  Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1159

    Article  Google Scholar 

  • Grunder M, Kienholz H, Bichsel M, Brun C (1985) Gefahren-Hinweiskarte von Davos - Parsenn - Dischma. MAB-Davos. Geographisches Institut, Bern, Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf, pp. 1 Map

  • Henne PD, Elkin C, Colombaroli D, Samartin S, Bugmann H, Heiri O, Tinner W (2013) Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling. Landscape Ecol 28:819–833

    Article  Google Scholar 

  • Hermann A, Schleifer S, Wrbka T (2011) The concept of ecosystem services regarding landscape research: a review. Living Rev Landsc Res 5(1):1–37

    Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huang Q, Swatantran A, Dubayah R, Goetz SJ (2014) The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States. PLoS One 9(8):e103236

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulvey KB, Hobbs RJ, Standish RJ, Lindenmayer DB, Lach L, Perring MP (2013) Benefits of tree mixes in carbon plantings. Nat Clim Chang 3(10):869–874

    Article  CAS  Google Scholar 

  • Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For Ecol Manag 207(1–2):5–18

    Article  Google Scholar 

  • Jacob M, Leuschner C, Thomas FM (2010) Productivity of temperate broad-leaved forest stands differing in tree species diversity. Ann For Sci 67:503–504

    Article  Google Scholar 

  • Jönsson AM, Schroeder LM, Lagergren F, Anderbrant O, Smith B (2012) Guess the impact of Ips typographus—an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric For Meteorol 166–167:188–200

    Article  Google Scholar 

  • Kausrud K, Økland B, Skarpaas O, Grégoire J-C, Erbilgin N, Stenseth NC (2012) Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev 87:34–51

    Article  PubMed  Google Scholar 

  • Keidel B (1975) Die Zirbe im Lungau und ihre Bedeutung für die Hochlagenbewaldung, eine wald- und heimatkundliche Studie. Festungsverlag, Salzburg

    Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204

    Article  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Kuuluvainen T, Penttinen A, Leinonen K, Nygren M (1996) Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silva Fenn 30:315–328

    Article  Google Scholar 

  • Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For Ecol Manage 243(1):116–127

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lindner M, Rummukainen M (2013) Climate change and storm damage risk in European forests. In: Gardiner BA, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll BC (eds) What Science Can Tell Us. European Forest Institute, Barcelona, pp 109–115

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D (2001) Ecology—biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Lu N, Fu B, Jin T, Chang R (2014) Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecol 29(10):1697–1708

    Article  Google Scholar 

  • MacArthur R, MacArthur J (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • Mareschal B (2013) Visual PROMETHEE

  • Mason WL, Connolly T (2013) Mixtures with spruce species can be more productive than monocultures: evidence from the Gisburn experiment in Britain. Forestry 87:209–217

    Article  Google Scholar 

  • Mendoza GA, Martins H (2006) Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. For Ecol Manag 230(1–3):1–22

    Article  Google Scholar 

  • Mitchell SJ (2012) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86:147–157

    Article  Google Scholar 

  • Mori AS, Furukawa T, Sasaki T (2013) Response diversity determines the resilience of ecosystems to environmental change. Biol Rev 88(2):349–364

    Article  PubMed  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219

    Article  PubMed  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service. Curr Opin Environ Sustain 2:75–79

    Article  Google Scholar 

  • O’Hara KL, Ramage BS (2013) Silviculture in an uncertain world: utilizing multi-aged management systems to integrate disturbance. Forestry 86:401–410

    Article  Google Scholar 

  • Onaindia M, de Manuel BF, Madariaga I, Rodriguez-Loinaz G (2013) Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulation. For Ecol Manag 289:1–9

    Article  Google Scholar 

  • Ott EK (1997) Gebirgsnadelwälder ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Haupt, Bern

    Google Scholar 

  • Overbeck M, Schmidt M (2012) Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany). For Ecol Manag 266:115–125

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Pascual C, Cohen W, Garcìa-Abril A, Arroyo Méndez LA, Valbuena Puebla R, Martí Fernández S, Manzanera de la Vega JA (2008) Mean height and variability of height derived from lidar data and Landsat images relationship. Proc. Silvilazer, Edinburgh

    Google Scholar 

  • Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255:781–786

    Article  Google Scholar 

  • Pretzsch H (2003) The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.). J For Sci 49:491–501

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth, and yield. Springer, Berlin

    Book  Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67(7):712

    Article  Google Scholar 

  • Pukkala T, Lähde E, Laiho O (2009) Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manag 258:207–216

    Article  Google Scholar 

  • Ratcliffe S, Liebergesell M, Ruiz-Benito P, Madrigal Gonzalez J, Muñoz Castañeda JM, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Peñuelas J, Zavala MA (2016) Modes of functional biodiversity control on tree productivity across the European continent. Glob Ecol Biogeogr 25:251–262

    Article  Google Scholar 

  • Scherer-Lorenzen Körner C, Schulze ED (2005) Forest diversity and function. Springer, Berlin

    Book  Google Scholar 

  • Schneebeli M, Bebi P (2004) Snow and Avalanche controlling. Encyclopedia of Forest Science. Elsevier Academic Press, Boston, pp 397–402

    Book  Google Scholar 

  • Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Chang Biol 12:1435–1450

    Article  Google Scholar 

  • Schumacher S, Bugmann H, Mladenoff DJ (2004) Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecol Model 180:175–194

    Article  Google Scholar 

  • Shang Z, He HS, Xi W, Shifley SR, Palik BJ (2012) Integrating LANDIS model and a multi-criteria decision-making approach to evaluate cumulative effects of forest management in the Missouri Ozarks, USA. Ecol Model 229:50–63

    Article  Google Scholar 

  • Stokes A (2006) Selecting tree species for use in rockfall-protection forests. For Snow Landsc Res 80(1):77–86

    Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402

    Article  Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Montreal, Canada, pp. 67

  • Thrippleton T, Bugmann H, Kramer-Priewasser K, Snell RS (2016) Herbaceous understorey: an overlooked player in forest landscape dynamics. Ecosystems:1–15

  • Toïgo M, Vallet P, Perot T, Bontemps JD, Piedallu C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103(2):502–512

    Article  Google Scholar 

  • Varga P, Chen HYH, Klinka K (2005) Tree-size diversity between single- and mixed-species stands in three forest types in western Canada. Can J For Res 35(3):593–601

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2(2):95–113

    Article  Google Scholar 

  • Xi W, Coulson RN, Birt AG, Shang ZB, Waldron JD, Lafon CW, Cairns DM, Tchakerian MD, Klepzig KD (2009) Review of forest landscape models: types, methods, development and applications. Acta Ecol Sin 29:69–78

    Article  Google Scholar 

  • Yousefpour R, Hanewinkel M, Le Moguedec G (2010) Evaluating the suitability of management strategies of pure Norway spruce forests in the Black Forest area of Southwest Germany for adaptation to or mitigation of climate change. Environ Manag 45(2):387–402

    Article  Google Scholar 

  • Zenner EK, Hibbs DE (2000) A new method for modeling the heterogeneity of forest structure. For Ecol Manage 129:75–87

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Swiss State Secretariat for Education, Science and Innovation under the framework of COST Action EuMIXFOR of the European Union (Grant No. C13.0069). We also thank especially Timothy Thrippleton and Nicolas Bircher for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Schuler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuler, L.J., Bugmann, H. & Snell, R.S. From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale?. Landscape Ecol 32, 1499–1516 (2017). https://doi.org/10.1007/s10980-016-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0422-6

Keywords

Navigation