Landscape Ecology

, Volume 31, Issue 10, pp 2471–2483 | Cite as

Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program

  • Clémentine AzamEmail author
  • Isabelle Le Viol
  • Jean-François Julien
  • Yves Bas
  • Christian Kerbiriou
Research Article



Light pollution is a global change affecting a major proportion of global land surface. Although the impacts of Artificial Light At Night (ALAN) have been documented locally for many taxa, the extent of effect of ALAN at a landscape scale on biodiversity is unknown.


We characterized the landscape-scale impacts of ALAN on 4 insectivorous bat species Pipistrellus pipistrellus, Pipistrellus kuhlii, Eptesicus serotinus, Nyctalus leisleri, and compared the extent of their effects to other major land-use pressures.


We used a French national-scale monitoring program recording bat activity among 2-km car transect surveys, and extracted landscape characteristics around transects with satellite and land cover layers. For each species, we performed multi-model averaging at 4 landscape scales (from 200 to 1000 m buffers around transects) to compare the relative effects of the average radiance, the proportion of impervious surface and the proportion of intensive agriculture.


For all species, ALAN had a stronger negative effect than impervious surface at the 4 landscape scales tested. This effect was weaker than the effect of intensive agriculture. The negative effect of ALAN was significant for P. pipistrellus, P. kuhlii and E. serotinus, but not for N. leisleri. The effect of impervious surface varied among species while intensive agriculture had a significant negative effect on the 4 species.


Our results highlight the need to consider the impacts of ALAN on biodiversity in land-use planning and suggest that using only impervious surface as a proxy for urbanization may lead to underestimated impacts on biodiversity.


Outdoor lighting Urbanization Land-use planning Nightscape Bats Chiroptera 



We sincerely acknowledge the engagement of all the volunteers in the French Bat Monitoring Program. We also thank the “Réseau francilien de recherche et de développement soutenable” and the R2DS PhD fellowship for funding and the 2 anonymous reviewers for their insightful comments on the manuscript.

Supplementary material

10980_2016_417_MOESM1_ESM.docx (776 kb)
Supplementary material 1 (DOCX 776 kb)


  1. Arthur L, Lemaire M (2009) Les Chauves-souris de France Belgique Luxembourg et Suisse. BIOTOPEGoogle Scholar
  2. Azam C, Kerbiriou C, Vernet A, Julien JF, Bas Y, Plichard L, Maratrat J, Le Viol I (2015) Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Global Change Biol 21:4333–4341CrossRefGoogle Scholar
  3. Barton K (2015) MuMIn: Multi-Model Inference. R package version 1.13.4.
  4. Bates AJ, Sadler JP, Grundy D, Lowe N, Davis G, Baker D, Bridge M, Freestone R, Gardner D, Gibson C, Hemming R, Howarth S, Orridge S, Shaw M, Tams T, Young H (2014) Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity. PLoS ONE 9:e86925. doi: 10.1371/journal.pone.0086925 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  6. Baugh K, Hsu F-C, Elvidge CD, Zhizhin M (2013) Nighttime lights compositing using the VIIRS day-night band: preliminary results. Proc Asia-Pac Adv Netw 35:70–86CrossRefGoogle Scholar
  7. Bennie J, Davies TW, Cruse D, Inger R, Gaston KJ (2015) Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Philos Trans R Soc Lond B 370:20140131. doi: 10.1098/rstb.2014.0131 CrossRefGoogle Scholar
  8. Blake D, Hutson AM, Racey PA, Rydell J, Speakman JR (1994) Use of lamplit roads by foraging bats in southern England. J Zool 234:453–462. doi: 10.1111/j.1469-7998.1994.tb04859.x CrossRefGoogle Scholar
  9. Boldogh S, Dobrosi D, Samu P (2007) The effects of the illumination of buildings on house-dwelling bats and its conservation consequences. Acta Chiropterol 9:527–534CrossRefGoogle Scholar
  10. Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biol Conserv 144:2300–2310CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Burt J (2006) Syrinx, Version 2.6 h. University of Washington, Seattle.
  13. Charbonnier Y, Barbaro L, Theillout A, Jactel H (2014) Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS One 9:e109488CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, López Jr JD, McCracken GF, Medellín RA, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz TH (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4:238–243. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  15. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291CrossRefGoogle Scholar
  16. CORINE Land Cover (2006) Ministère de l’Ecologie, du Développement Durable et de l’Energie. Available at :
  17. Davies TW, Coleman M, Griffith KM, Jenkins SR (2015) Night-time lighting alters the composition of marine epifaunal communities. Biol Lett 11:20150080CrossRefPubMedPubMedCentralGoogle Scholar
  18. Da Silva A, Valcu M, Kempenaers B (2015) Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos Trans R Soc Lond B 370:20140126CrossRefGoogle Scholar
  19. de Jong M, Ouyang JQ, Da Silva A, van Grunsven RH, Kempenaers B, Visser ME, Spoelstra K (2015) Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos Trans R Soc Lond B 370:20140128CrossRefGoogle Scholar
  20. Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ 12:212–217CrossRefGoogle Scholar
  21. Devictor V, Julliard R, Couvet D, Lee A, Jiguet F (2007) Functional homogenization effect of urbanization on bird communities. Conserv Biol 21:741–751CrossRefPubMedGoogle Scholar
  22. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29CrossRefGoogle Scholar
  23. Downs NC, Beaton V, Guest J, Polanski J, Robinson SL, Racey PA (2003) The effects of illuminating the roost entrance on the emergence behaviour of Pipistrellus pygmaeus. Biol Conserv 111:247–252CrossRefGoogle Scholar
  24. Downs NC, Racey PA (2006) The use by bats of habitat features in mixed farmland in Scotland. Acta Chiropterol 8:169–185CrossRefGoogle Scholar
  25. Eisenbeis G (2006) Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, D.C., pp 281–304Google Scholar
  26. Falchi F, Cinzano P, Duriscoe D, Kyba CD, Elvidge K, Baugh BA, Portnov NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Sci Adv 2(6):e1600377CrossRefPubMedPubMedCentralGoogle Scholar
  27. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  28. Fonderflick J, Azam C, Brochier C, Cosson E, Quékenborn D (2015) Testing the relevance of using spatial modeling to predict foraging habitat suitability around bat maternity: a case study in Mediterranean landscape. Biol Conserv 192:120–129CrossRefGoogle Scholar
  29. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207-C2CrossRefGoogle Scholar
  30. Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87:178–183CrossRefGoogle Scholar
  31. Frey-Ehrenbold A, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50:252–261. doi: 10.1111/1365-2664.12034 CrossRefGoogle Scholar
  32. Gaston KJ, Bennie J (2014) Demographic effects of artificial nighttime lighting on animal populations. Environ Rev 22:323–330CrossRefGoogle Scholar
  33. Gaston KJ, Davies TW, Bennie J, Hopkins J (2012) REVIEW: reducing the ecological consequences of night-time light pollution: options and developments. J Appl Ecol 49:1256–1266CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gaston KJ, Duffy JP, Bennie J (2015) Quantifying the erosion of natural darkness in the global protected area system. Conserv Biol 29:1132–1141CrossRefPubMedGoogle Scholar
  35. Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW (2014) Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176(4):917–931CrossRefPubMedPubMedCentralGoogle Scholar
  36. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272.CrossRefGoogle Scholar
  37. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711CrossRefPubMedGoogle Scholar
  38. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large UK Conurbation. PLoS One 7:e33300CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2015) The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Global Change Biol 21:2467–2478CrossRefGoogle Scholar
  40. Hölker F, Moss T, Griefahn B, Kloas, W, Voigt CC, Henckel D, Hänel A, Kappeler PM, Völker S, Schwope A, Franke S, Uhrlandt D, Fischer J, Klenke R, Wolter C, Tockner K (2010) The dark side of light: a transdisciplinary research agenda for light pollution policy. Accessed 25 Nov 2014.
  41. IGN (2012) Institut National de l’Information Géographique et Forestière. Available at
  42. Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881. doi: 10.1890/13-0388.1 CrossRefPubMedGoogle Scholar
  43. Jennings N, Pocock MJO (2009) Relationships between sensitivity to agricultural intensification and ecological traits of insectivorous mammals and arthropods. Conserv Biol 23:1195–1203CrossRefPubMedGoogle Scholar
  44. Jones G, Rydell J (1994) Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philos Trans R Soc B 346:445–455CrossRefGoogle Scholar
  45. Jones G, Jacobs D, Kunz T et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115. doi: 10.3354/esr00182
  46. Jung K, Kalko EKV (2010) Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J Mammal 91:144–153. doi: 10.1644/08-MAMM-A-313R.1
  47. Jung K, Threlfall C (2016) Urbanization and its effect on bats: a global meta-analysis. In: Kingston T, Voigt C (eds) Bats in the anthropocene: conservation of bats in a changing world. Springer, New York, pp 13–33CrossRefGoogle Scholar
  48. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci 99:16812–16816CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kuijper DPJ, Schut J, van Dullemen D, Toorman H, Goossens N, Ouwehand J, Limpens HJGA (2008) Experimental evidence of light disturbance along the commuting routes of pond bats (Myotis dasycneme). Lutra 51:37–49Google Scholar
  50. Kyba CCM, Hänel A, Hölker F (2014) Redefining efficiency for outdoor lighting. Energy Environ Sci 7:1806–1809CrossRefGoogle Scholar
  51. Kyba CCM, Hölker F (2013) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landscape Ecol 28:1637–1640CrossRefGoogle Scholar
  52. Kyba CCM, Ruhtz T, Fischer J, Hölker F (2011) Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS One 6:e17307CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lacoeuilhe A, Machon N, Julien J-F, Le Bocq A, Kerbiriou C (2014) The influence of low intensities of light pollution on bat communities in a semi-natural context. PLoS One 9:e103042CrossRefPubMedPubMedCentralGoogle Scholar
  54. Le Viol I, Jiguet F, Brotons L, Herrando S, Lindström A, Pearce-Higgins JW, Reif Jirí, Van Turnhout C, Devictor V (2012) More and more generalists: two decades of changes in the European avifauna. Biol Lett 8:780–2. doi: 10.1098/rsbl.2012.0496 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mathews F, Roche N, Aughney T, Jones N, Day J, Baker J, Langton S (2015) Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Philos Trans R Soc Lond B 370:20140124CrossRefGoogle Scholar
  56. McDonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703CrossRefGoogle Scholar
  57. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  58. Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of bats. Oryx 36:18–34CrossRefGoogle Scholar
  59. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2015) What determines the spatial extent of landscape effects on species? Landscape Ecol. doi:  10.1007/s10980-015-0314-1
  60. Minnaar C, Boyles JG, Minnaar IA, Sole CL, McKechnie AE (2015) Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. J Appl Ecol 52:522–531CrossRefGoogle Scholar
  61. Nally RM (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—“predictive” and “explanatory” models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  62. Nordt A, Klenke R (2013) Sleepless in Town–Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds. PLoS ONE 8:e71476. doi: 10.1371/journal.pone.0071476
  63. Penone C, Le Viol I, Pellissier V, Julien JF, Bas Y, Kerbiriou C (2013) Use of large-scale acoustic monitoring to assess anthropogenic pressures on orthoptera communities. Conserv Biol 27:979–987CrossRefPubMedGoogle Scholar
  64. Perkin EK, Hölker F, Tockner K (2014) The effects of artificial lighting on adult aquatic and terrestrial insects. Freshw Biol 59:368–377CrossRefGoogle Scholar
  65. Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island Press, Washington, D.CGoogle Scholar
  66. Robert KA, Lesku JA, Partecke J, Chambers B (2015) Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc R Soc B 282:20151745CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rydell J (1992) Exploitation of insects around streetlamps by bats in sweden. Funct Ecol 6:744–750CrossRefGoogle Scholar
  68. Rydell J, Entwistle A, Racey PA (1996) Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76:243–252CrossRefGoogle Scholar
  69. Safi K, Kerth G (2004) A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv Biol 18:1293–1303. doi: 10.1111/j.1523-1739.2004.00155.x
  70. Sanders D, Kehoe R, Tiley K, Bennie J, Cruse D, Davies TW, van Frank Veen FJ, Gaston KJ, Tiley K (2015) Artificial nighttime light changes aphid-parasitoid population dynamics. Sci Rep. doi: 10.1038/srep15232 PubMedPubMedCentralGoogle Scholar
  71. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  72. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285CrossRefGoogle Scholar
  73. Stone EL, Jones G, Harris S (2009) Street lighting disturbs commuting bats. Curr Biol 19:1123–1127CrossRefPubMedGoogle Scholar
  74. Stone EL, Jones G, Harris S (2012) Conserving energy at a cost to biodiversity? Impacts of LED lighting on bats. Global Change Biol 18:2458–2465CrossRefGoogle Scholar
  75. Tilman D, Fargione J, Wolff B, D’Antonio, C, Dobson A, Robert H, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi: 10.1126/science.1057544 CrossRefPubMedGoogle Scholar
  76. United Nations, Department of Economic and Social Affairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). Available at
  77. van Geffen KG, van Eck E, de Boer RA, Grunsven RH, Salis L, Berendse F, Veenendaal EM (2015) Artificial light at night inhibits mating in a geometrid moth. Insect Conserv Divers 8:282–287CrossRefGoogle Scholar
  78. van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biol Conserv 144:2274–2281CrossRefGoogle Scholar
  79. Vandevelde J-C, Bouhours A, Julien J-F, Couvet D, Kerbiriou C (2014) Activity of European common bats along railway verges. Ecol Eng 64:49–56CrossRefGoogle Scholar
  80. Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993CrossRefGoogle Scholar
  81. Wickramasinghe LP, Harris S, Jones G, Vaughan Jennings N (2004) Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conserv Biol 18:1283–1292CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Clémentine Azam
    • 1
    Email author
  • Isabelle Le Viol
    • 1
  • Jean-François Julien
    • 1
  • Yves Bas
    • 1
  • Christian Kerbiriou
    • 1
  1. 1.Center for Ecology and Conservation Science, UMR7204-MNHN-CNRS-UPMC, National Natural History MuseumParisFrance

Personalised recommendations