Abstract
Context
Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to influence future forest conditions. Climate change compounds this uncertainty.
Objectives
We explored how continued forest recovery dynamics affect forest biomass and species composition and how climate change may alter this trajectory.
Methods
Using a spatially explicit landscape simulation model incorporating an ecophysiological model, we simulated forest processes in New England from 2010 to 2110. We compared forest biomass and composition from simulations that used a continuation of the current climate to those from four separate global circulation models forced by a high emission scenario (RCP 8.5).
Results
Simulated forest change in New England was driven by continued recovery dynamics; without the influence of climate change forests accumulated 34 % more biomass and succeed to more shade tolerant species; Climate change resulted in 82 % more biomass but just nominal shifts in community composition. Most tree species increased AGB under climate change.
Conclusions
Continued recovery dynamics will have larger impacts than climate change on forest composition in New England. The large increases in biomass simulated under all climate scenarios suggest that climate regulation provided by the eastern forest carbon sink has potential to continue for at least a century.
Similar content being viewed by others
References
Aber JD, Ollinger SV, Federer CA, Reich PB, Goulden ML, Kicklighter DW, Melillo JM, Lathrop RG (1995) Predicting the effects of climate change on water yield and forest production in the Northeastern United States. Clim Res 5:207–222
Albani M, Moorcroft PR, Ellison AM, Orwig DA, Foster DR (2010) Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Can J For Res 40:119–133
Battles JJ, Fahey TJ, Driscoll CT, Blum JD, Johnson CE (2014) Restoring soil calcium reverses forest decline. Environ Sci Technol Lett 1:15–19
Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program—national sampling design and estimation procedures. General technical report. SRS-80. Department of Agriculture, Forest Service, Southern Research Station, Ashville
Bishop DA, Beier CM, Pederson N, Lawrence GB, Stella JC, Sullivan TJ (2015) Regional growth decline of sugar maple (Acer saccharum) and its potential causes. Ecosphere 6:1–14
Blumstein M, Thompson JR (2015) Land-use impacts on the quantity and configuration of ecosystem service provisioning in Massachusetts, USA. J Appl Ecol 52:1009–1019
Buermann W, Bikash PR, Jung M, Burn DH, Reichstein M (2013) Earlier springs decrease peak summer productivity in North American boreal forests. Environ Res Lett 8:024027
Chandler CC, King DI, Chandler RB (2012) Do mature forest birds prefer early-successional habitat during the post-fledging period? For Ecol Manag 264:1–9
Cogbill CV, Burk J, Motzkin G (2002) The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveys. J Biogeogr 29:1279–1304
Daly C, Gibson W (2002) 103-year high-resolution temperature climate data set for the conterminous United States. The PRISM Climate Group, Oregon State University, Corvallis
Davidson EA, Richardson AD, Savage KE, Hollinger DY (2006) A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob Change Biol 12:230–239
Davis MB, Botkin DB (1985) Sensitivity of cool-temperate forests and their fossil pollen record to rapid temperature change. Quat Res 23:327–340
de Bruijn A, Gustafson EJ, Sturtevant BR, Foster JR, Miranda BR, Lichti NI, Jacobs DF (2014) Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol Model 287:44–57
Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N, Cooke B, Theoharides KA, Stange EE, Harrington R, Ehrenfeld J, Gurevitch J, Lerdau M, Stinson K, Wick R, Ayres M (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of Northeastern North America: what can we predict? This article is one of a selection of papers from NE Forests 2100: a synthesis of climate change impacts on forests of the Northeastern US and Eastern Canada. Can J For Res 39:231–248
Duveneck MJ, Scheller RM, White MA, Handler SD, Ravenscroft C (2014) Climate change effects on northern Great Lake (USA) forests: a case for preserving diversity. Ecosphere 5:1–26
Duveneck MJ, Thompson JR, Wilson BT (2015) An imputed forest composition map for New England screened by species range boundaries. For Ecol Manag 347:107–115
Eisen K, Plotkin AB (2015) Forty years of forest measurements support steadily increasing aboveground biomass in a maturing, Quercus-dominant Northeastern forest. J Torrey Bot Soc 142:97–112
Environmental Protection Agency (2012) Level IV ecoregions of EPA region 1. US EPA Office of Research and Development (ORD)—National Health and Environmental Effects Research Laboratory (NHEERL), Corvallis
Farnsworth EJ, Ogurcak DE (2015) Biogeography and decline of rare plants in New England: historical evidence and contemporary monitoring. Ecol Appl 16:1327–1337
Fisichelli NA, Stefanski A, Frelich LE, Reich PB (2015) Temperature and leaf nitrogen affect performance of plant species at range overlap. Ecosphere 6:1–8
Foster DR, Oswald WW, Faison EK, Doughty ED, Hansen BCS (2006) A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England. Ecology 87:2959–2966
Foster JR, D’Amato AW (2015) Montane forest ecotones moved downslope in Northeastern US in spite of warming between 1984 and 2011. Glob Change Biol 21:4497–4507
Gavin DG, Beckage B, Osborne B (2008) Forest dynamics and the growth decline of red spruce and sugar maple on Bolton Mountain, Vermont: a comparison of modeling methods. Can J For Res 38:2635–2649
Giasson M-A, Ellison A, Bowden R, Crill P, Davidson E, Drake J, Frey S, Hadley J, Lavine M, Melillo J, Munger J, Nadelhoffer K, Nicoll L, Ollinger S, Savage K, Steudler P, Tang J, Varner R, Wofsy S, Foster D, Finzi A (2013) Soil respiration in a Northeastern US temperate forest: a 22-year synthesis. Ecosphere 4:1–28
Gustafson EJ (2013) When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecol 28:1429–1437
Gustafson EJ, De Bruijn AMG, Miranda BR, Sturtevant BR (2016) Using first principles to increase the robustness of forest landscape models for projecting climate change impacts. TBD
Gustafson EJ, De Bruijn AMG, Pangle RE, Limousin J-M, McDowell NG, Pockman WT, Sturtevant BR, Muss JD, Kubiske ME (2014) Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Glob Change Biol 21:1–14
Hadley JL, Schedlbauer JL (2002) Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England. Tree Physiol 22:1079–1092
Hijmans RJ (2014) Raster: geographic data analysis and modeling. R package version 2.2-12
Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob Change Biol 10:1689–1706
Hurtt GC, Pacala SW, Moorcroft PR, Caspersen J, Shevliakova E, Houghton RA, Moore B (2002) Projecting the future of the US carbon sink. Proc Natl Acad Sci USA 99:1389–1394
IPCC (2013) Climate change 2013: the physical science basis, working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, summary for policymakers
Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manag 254:390–406
Keenan T, Gray J, Friedl M (2014) Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change 4:598–604
Little EL (1971) Atlas of United States trees: conifers and important hardwoods, vol 1. US Department of Agriculture Miscellaneous Publication 1146
Mather AS (1992) The forest transition. Area 24:367–379
Mohan JE, Cox RM, Iverson LR (2009) Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. This article is one of a selection of papers from NE Forests 2100: a synthesis of climate change impacts on forests of the Northeastern US and Eastern Canada. Can J For Res 39:213–230
Ning L, Riddle EE, Bradley RS (2015) Projected changes in climate extremes over the Northeastern United States*. J Clim 28:3289–3310
Nunery JS, Keeton WS (2010) Forest carbon storage in the Northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. For Ecol Manag 259:1363–1375
Ollinger SV, Goodale CL, Hayhoe K, Jenkins JP, Goodale SVOCL, Jenkins KHJP (2008) Potential effects of climate change and rising CO2 on ecosystem processes in Northeastern US forests. Mitig Adapt Strat Glob Change 13:467–485
Ordonez A, Martinuzzi S, Radeloff VC, Williams JW, Radelo VC (2014) Combined speeds of climate and land-use change of the conterminous US until 2050. Nat Clim Change 4:1–6
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/
Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol Model 201:409–419
Scheller RM, Van Tuyl S, Clark K, Hom J, La Puma I (2011) Carbon sequestration in the New Jersey pine barrens under different scenarios of fire management. Ecosystems 14:987–1004
Schuster WSF, Griffin KL, Roth H, Turnbull MH, Whitehead D, Tissue DT (2008) Changes in composition, structure and aboveground biomass over seventy-six years (1930–2006) in the Black Rock Forest, Hudson Highlands, southeastern New York state. Tree Physiol 28:537–549
Schwenk WS, Donovan TM, Keeton WS, Nunery JS (2012) Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecol Appl 22:1612–1627
Sendall KM, Reich PB, Zhao C, Jihua H, Wei X, Stefanski A, Rice K, Rich RL, Montgomery RA (2015) Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob Change Biol 21:1342–1357
Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733
Stoner AMK, Hayhoe K, Yang X, Wuebbles DJ (2013) An asynchronous regional regression model for statistical downscaling of daily climate variables. Int J Climatol 33:2473–2494
Tang G, Beckage B (2010) Projecting the distribution of forests in New England in response to climate change. Divers Distrib 16:144–158
Thompson JR, Carpenter DN, Cogbill CV, Foster DR (2013) Four centuries of change in Northeastern United States forests. PLoS One 8:e72540
Thompson JR, Foster DR, Scheller R, Kittredge D (2011) The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Ecol Appl 21:2425–2444
Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger JW (2007) Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J Geophys Res 112:G02020
Wang WJ, He HS, Thompson III FR, Fraser JS, Dijak WD (in press) Changes in forest biomass and tree species distribution under climate change in the Northeastern US. Landscape Ecol
Wear DN, Coulston JW (2015) From sink to source: regional variation in US forest carbon futures. Sci Rep 5:16518
Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18:1042–1052
Acknowledgments
This research was supported in part by the National Science Foundation Harvard Forest Long Term Ecological Research Program (Grant No. NSF-DEB 12-37491) and the Scenarios Society and Solutions Research Coordination Network (Grant No. NSF-DEB-13-38809). Additional funding was provided by an Agriculture and Food Research Initiative Competitive Grant No. 105321 from the USDA National Institute of Food and Agriculture to Purdue University. We thank David Foster and two anonymous reviewers that helped improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Duveneck, M.J., Thompson, J.R., Gustafson, E.J. et al. Recovery dynamics and climate change effects to future New England forests. Landscape Ecol 32, 1385–1397 (2017). https://doi.org/10.1007/s10980-016-0415-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10980-016-0415-5