Skip to main content


Log in

Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript



Urban sprawl and the expanding transportation infrastructure drive land consumption and landscape fragmentation, causing environmental deterioration and loss of species. Current understanding of how these drivers interact to shape landscape fragmentation is still poor. However, a strong correlation between urban sprawl and landscape fragmentation patterns is commonly assumed.


Our main objective was to test the strength, non-stationarity, and scale-dependency of the relationship between urban sprawl and landscape fragmentation patterns (‘sprawl-fragmentation relationship’). Subsequently, we propose an extended framework for the links between urban sprawl, expansion of transport infrastructure, and landscape fragmentation.


We quantified spatial patterns of urban sprawl and landscape fragmentation for mainland Spain at multiple scales. We then fitted global regression models and geographically weighted regression models with metrics of landscape fragmentation and urban sprawl.


Most variation in landscape fragmentation values (almost 80 % on average) is not explained by urban sprawl metrics through global modeling. Local models show substantial improvements in model performance, with an average of 37 % of the variance remaining unexplained. The contribution of urban sprawl to landscape fragmentation patterns varies locally and depends on scale, with higher contributions at coarser scales and at higher organizational levels.


Our investigation revealed three critical characteristics of the sprawl-fragmentation relationship: it does not prevail, is non-stationary, and scale-dependent. We propose four mechanisms that may have resulted in this mismatch: scale, time-lagged development, spatial arrangement of development, and other external variables including teleconnections. These spatial mismatches provide windows of opportunity for conservation through better development strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


m eff :

Effective mesh size

s eff :

Effective mesh density


Degree of urban dispersion


Proportion of urban area

UP :

Urban permeation


Urban permeation units

HP :

Horizon of perception


Ordinary least squares


Geographically weighted Regression


  • Aljoufie M, Brussel M, Zuidgeest M, van Maarseveen M (2013) Urban growth and transport infrastructure interaction in Jeddah between 1980 and 2007. Int J Appl Earth Obs 21:493–505

    Article  Google Scholar 

  • Bai X (2007) Integrating global environmental concerns into urban management: the scale and readiness arguments. J Ind Ecol 11(2):15–29

    Article  Google Scholar 

  • Bar-Massada A, Radeloff VC, Stewart SI (2014) Biotic and abiotic effects of human settlements in the wildland–urban interface. Bioscience 64(5):429

    Article  Google Scholar 

  • Bento AM, Cropper ML, Mobarak AM, Vinha K (2005) The effects of urban spatial structure on travel demand in the United States. Rev Econ Stat 87(3):466–478

    Article  Google Scholar 

  • Bickford SA, Laffan SW (2006) Multi-extent analysis of the relationship between pteridophyte species richness and climate. Glob Ecol Biogeogr 15(6):588–601

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23(8):453–460

    Article  PubMed  Google Scholar 

  • Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15(6):1851

    Article  Google Scholar 

  • Clark JK, McChesney R, Munroe DK, Irwin EG (2009) Spatial characteristics of exurban settlement pattern in the United States. Landsc Urban Plan 90(3–4):178–188

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes. Pion, London

    Google Scholar 

  • Da Silva Cassemiro FA, De Souza Barreto B, Rangel TFLVB, Diniz-Filho JAF (2007) Non-stationarity, diversity gradients and the metabolic theory of ecology. Glob Ecol Biogeogr 16(6):820–822

    Article  Google Scholar 

  • Dulac J (2013) Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. IEA, Paris, p 54

    Google Scholar 

  • EEA-FOEN (2016) Urban sprawl in Europe. Joint EEA-FOEN report. European Environment Agency & Swiss Federal Office for the Environment, Publications Office of the European Union, Luxembourg Copenhagen, p 135

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Forman RT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, Washington, DC

    Google Scholar 

  • Fortin M-J, Dale M (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6(5):264–272

    Article  Google Scholar 

  • Haber W (2007) Energy, food, and land—the ecological traps of humankind. Env Sci Poll Res Int 14(6):359–365

    Article  Google Scholar 

  • Handy S (2005) Smart growth and the transportation-land use connection: what does the research tell us? Int Reg Sci Rev 28(2):146–167

    Article  Google Scholar 

  • Hawbaker T, Radeloff V, Hammer R, Clayton M (2005) Road density and landscape pattern in relation to housing density, and ownership, land cover, and soils. Landscape Ecol 20(5):609–625

    Article  Google Scholar 

  • Hawbaker TJ, Radeloff VC, Clayton MK, Hammer RB, Gonzalez-Abraham CE (2006) Road development, housing growth, and landscape fragmentation In Northern Wisconsin: 1937–1999. Ecol Appl 16(3):1222–1237

    Article  PubMed  Google Scholar 

  • Inostroza L, Baur R, Csaplovics E (2013) Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterization of spatial patterns. J Environ Manag 115:87–97

    Article  Google Scholar 

  • Irwin EG, Bockstael NE (2007) The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. P Natl Acad Sci USA 104(52):20672–20677

    Article  CAS  Google Scholar 

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15(2):115–130

    Article  Google Scholar 

  • Jaeger JAG (2002) Landscape fragmentation. A transdisciplinary study according to the concept of environmental threat. Verlag Eugen Ulmer, Stuttgart, p 447

    Google Scholar 

  • Jaeger JAG, Schwick C (2014) Improving the measurement of urban sprawl: weighted urban proliferation (WUP) and its application to Switzerland. Ecol Indicators 38:294–308

    Article  Google Scholar 

  • Jaeger JAG, Schwarz-von Raumer HG, Esswein H, Müller M, Schmidt-Lüttman M (2007) Time series of landscape fragmentation caused by transportation infrastructure and urban development: a case study from Baden-Württemberg, Germany. Ecol Soc 12(1):22

    Google Scholar 

  • Jaeger JAG, Bertiller R, Schwick C, Müller K, Steinmeier C, Ewald KC, Ghazoul J (2008) Implementing landscape fragmentation as an indicator in the swiss monitoring system of sustainable development (Monet). J Environ Manag 88(4):737–751

    Article  Google Scholar 

  • Jaeger JAG, Bertiller R, Schwick C, Cavens D, Kienast F (2010a) Urban permeation of landscapes and sprawl per capita: new measures of urban sprawl. Ecol Indicators 10(2):427–441

    Article  Google Scholar 

  • Jaeger JAG, Bertiller R, Schwick C, Kienast F (2010b) Suitability criteria for measures of urban sprawl. Ecol Indic 10(2):397–406

    Article  Google Scholar 

  • Jaeger JAG, Soukup T, Madriñán LF, Schwick C, Kienast F (2011) Landscape fragmentation in Europe. Joint EEA-FOEN report. ISSN 1725–9177. European Environment Agency & Swiss Federal Office for the Environment, Publications Office of the European Union, Luxembourg, p. 87

  • Jetz W, Rahbek C, Lichstein JW (2005) Local and global approaches to spatial data analysis in ecology. Glob Ecol Biogeogr 14(1):97–98

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571

    Article  PubMed  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669

    Article  PubMed  Google Scholar 

  • Lenth BA, Knight RL, Gilgert WC (2006) Conservation value of clustered housing developments. Conserv Biol 20(5):1445–1456

    Article  PubMed  Google Scholar 

  • Lin BB, Fuller RA (2013) FORUM: sharing or sparing? How should we grow the world’s cities? J Appl Ecol 50(5):1161–1168

    Google Scholar 

  • Liu J, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell WJ, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda Rocha G, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(2):26

    CAS  Google Scholar 

  • Mata R, Sanz C (2003) Atlas de los paisajes de España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • McMahon E (2010) Conservation communities: creating value with nature, open space, and agriculture. Urban Land Institute, Washington, DC

    Google Scholar 

  • Milder JC (2007) A framework for understanding conservation development and its ecological implications. Bioscience 57(9):757–768

    Article  Google Scholar 

  • Moser B, Jaeger JAG, Tappeiner U, Tasser E, Eiselt B (2007) Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape Ecol 22(3):447–459

    Article  Google Scholar 

  • PBL (2008) Urbanisation dynamics and quality of place in Europe. EURBANIS report 1. Planbureau voor de Leefomgeving (NEAA). Netherlands Environmental Assessment Agency (PBL), Bilthoven

  • Peiyue L, Hui Q, Jianhua W (2014) Environment: accelerate research on land creation. Nature 510:29–31

    Article  Google Scholar 

  • Pejchar L, Morgan PM, Caldwell MR, Palmer C, Daily GC (2007) Evaluating the potential for conservation development: biophysical, economic, and institutional perspectives. Conserv Biol 21(1):69–78

    Article  PubMed  Google Scholar 

  • R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15(3):799–805

    Article  Google Scholar 

  • Schneider A, Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud 45(3):659–692

    Article  Google Scholar 

  • Schupp D (2005) Umweltindikator Landschaftszerschneidung: ein zentrales Element zur Verknüpfung von Wissenschaft und Politik. GAIA—Ecol Perspect Sci Soc 14(2):101–106

    Google Scholar 

  • Schwick C, Jaeger JAG, Bertiller R, Kienast F (2012) Urban sprawl in Switzerland—unstoppable? Quantitative analysis 1935–2002 and implications for regional planning. Haupt Berne, Stuttgart

    Google Scholar 

  • Selva N, Kreft S, Kati V, Schluck M, Jonsson B-G, Mihok B, Okarma H, Ibisch P (2011) Roadless and low-traffic areas as conservation targets in Europe. Environ Manag 48(5):865–877

    Article  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012a) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci USA 109(40):16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012b) Urban land teleconnections and sustainability. Proc Natl Acad Sci USA 109(20):7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha MK, York AM, Boone CG, Zhang S (2012) Land fragmentation due to rapid urbanization in the phoenix metropolitan area: analyzing the spatiotemporal patterns and drivers. Appl Geogr 32(2):522–531

    Article  Google Scholar 

  • Siedentop S, Fina S (2010) Monitoring urban sprawl in Germany: towards a GIS-based measurement and assessment approach. J Land Use Sci 5(2):73–104

    Article  Google Scholar 

  • Soga M, Yamaura Y, Koike S, Gaston KJ (2014) Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J Appl Ecol 51(5):1378–1386

    Article  Google Scholar 

  • Su S, Xiao R, Jiang Z, Zhang Y (2012) Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr 34:295–305

    Article  Google Scholar 

  • Sushinsky JR, Rhodes JR, Possingham HP, Gill TK, Fuller RA (2013) How should we grow cities to minimize their biodiversity impacts? Glob Change Biol 19(2):401–410

    Article  Google Scholar 

  • Theobald DM, Miller JR, Hobbs NT (1997) Estimating the cumulative effects of development on wildlife habitat. Landsc Urban Plan 39(1):25–36

    Article  Google Scholar 

  • Torres A, Jaeger JAG, Alonso JC (in press) Assessing large-scale wildlife responses to human infrastructure development. Proc Natl Acad Sci USA

  • Travisi CM, Camagni R, Nijkamp P (2010) Impacts of urban sprawl and commuting: a modelling study for Italy. J Transp Geogr 18(3):382–392

    Article  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14(1):18–30

    Article  Google Scholar 

  • van der Grift EA, Pouwels R (2006) Restoring habitat connectivity across transport corridors: identifying high-priority locations for defragmentation with the use of an expert-based model. In: Davenport J, Davenport JL (eds) The ecology of transportation: managing mobility for the environment. Springer, Dordrecht

    Google Scholar 

  • Vance C, Hedel R (2007) The impact of urban form on automobile travel: disentangling causation from correlation. Transportation 34(5):575–588

    Article  Google Scholar 

  • Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, Ezeh A, Frumkin H, Gong P, Head P, Horton R, Mace GM, Marten R, Myers SS, Nishtar S, Osofsky SA, Pattanayak SK, Pongsiri MJ, Romanelli C, Soucat A, Vega J, Yach D (2015) Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet

  • Wissen Hayek U, Jaeger JAG, Schwick C, Jarne A, Schuler M (2011) Measuring and assessing urban sprawl: what are the remaining options for future settlement development in Switzerland for 2030? Appl Spat Anal Policy 4(4):1–31

    Article  Google Scholar 

  • Wu J, Jones KB, Li H, Loucks OL (2006) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrecht

    Book  Google Scholar 

Download references


The Spanish Ministry for Science and Innovation provided funds for this research (Project CGL2008-02567). AT’s work was funded through a FPU PhD grant from the Spanish Ministry of Education, Culture and Sport. We thank the Servicio de Ocupación del Suelo, from the National Center for Geographic Information (CNIG, Spain), for providing assistance with the SIOSE database. We also thank Liba Pejchar for her valuable comments on an earlier version of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aurora Torres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. Study area and reporting units. Supplementary material 1 (TIFF 2122 kb)


Fig. S2 to S14. Mapped local r2 values, slopes, and residuals from PUA-, DIS-, UP-models, and multivariate models. Supplementary material 2 (TIFF 21810 kb)


Fig. S15 to S17. Parameter estimates ordered by spatial extent of the reporting units. Supplementary material 3 (TIFF 1093 kb)


Table S1. Description of the urban sprawl and landscape fragmentation geometries (land cover types). Supplementary material 4 (DOCX 20 kb)

Table S2. Description of the landscape fragmentation geometry (linear elements). Supplementary material 5 (DOCX 11 kb)

Table S3. Summary results for all OLS and GWR models. Supplementary material 6 (DOCX 66 kb)


Table S4. Parameter estimates from the univariate OLS and GWR models. Table S5. Parameter estimates from the multivariate OLS and GWR models. Supplementary material 7 (DOCX 55 kb)

Table S6. Correlation analysis between urban sprawl metrics across scales. Supplementary material 8 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A., Jaeger, J.A.G. & Alonso, J.C. Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development. Landscape Ecol 31, 2291–2305 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: