Skip to main content

Advertisement

Log in

Using remote-sensing data to assess habitat selection of a declining passerine at two spatial scales

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Detailed information on habitat needs is integral to identify conservation measures for declining species. However, field data on habitat structure is typically limited in extent. Remote sensing has the potential to overcome these limitations of field-based studies.

Objective

We aimed to assess abiotic and biotic characteristics of territories used by the declining wood warbler (Phylloscopus sibilatrix), a forest-interior migratory passerine, at two spatial scales by evaluating a priori expectations of habitat selection patterns.

Methods

First, territories established by males before pairing, referred to as pre-breeding territories, were compared to pseudo-absence control areas located in the wider forested landscape (first spatial scale, Nterritories = 66, Ncontrols = 66). Second, breeding territories of paired wood warblers were compared to true-absence control areas located immediately close-by in the forest (second spatial scale, Nterritories = 78, Ncontrols = 78). Habitat variables predominantly described forest structure and were mainly based on first and last pulse lidar (light detection and ranging) data.

Results

Occurrence of pre-breeding territories was related to vegetation height, vertical diversity and stratification, canopy cover, inclination and solar radiation. Occurrence of breeding territories was associated to vegetation height, vertical diversity and inclination.

Conclusions

Territory selection at the two spatial scales addressed was governed by similar factors. With respect to conservation, habitat suitability for wood warblers could be retained by maintaining a shifting mosaic of stand ages and structures at large spatial scales. Moreover, leaf-off lidar variables have the potential to contribute to understanding the ecological niche of species in predominantly deciduous forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) Linear mixed-effects models using S4 classes (lme4). Package version 0.999999-0. http://cran.rstudio.com/bin/windows/contrib/2.14/. Accessed Dec 2012

  • Bellamy PE, Hill RA, Rothery P, Hinsley SA, Fuller RJ, Broughton RK (2009) Willow Warbler Phylloscops trochilus habitat in woods with different structure and management in southern England. Bird Stud 56:338–348

    Article  Google Scholar 

  • Bellis LM, Pidgeon AM, Radeloff VC, St-Louis V, Navarro JL, Martella MB (2008) Modeling habitat suitability for greater rheas based on satellite image texture. Ecol Appl 18:1956–1966

    Article  PubMed  Google Scholar 

  • Bibby CJ (1989) A survey of breeding wood warblers Phylloscopus sibilatrix in Britain, 1984–1985. Bird Stud 36:56–72

    Article  Google Scholar 

  • BirdLife International (2015) European red list of birds. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Brambilla M, Falco R, Negri I (2012) A spatially explicit assessment of within-season changes in environmental suitability for farmland birds along an altitudinal gradient. Anim Conserv 15:638–647

    Article  Google Scholar 

  • Brandtberg T, Warner TA, Landenberger RE, McGraw JB (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85:290–303

    Article  Google Scholar 

  • Broughton RK, Hinsley SA, Bellamy PE, Hill RA, Rothery P (2006) Marsh Tit Poecile palustris territories in a British broad-leaved wood. Ibis 148:744–752

    Article  Google Scholar 

  • Broughton RK, Ross AH, Freeman SN, Bellamy PE, Hinsley SA (2012) Describing habitat occupation by woodland birds with territory mapping and remotely sensed data: an example using the marsh tit (Poecile palustris). Condor 114:812–822

    Article  Google Scholar 

  • Bunnell FL, Huggard DJ (1999) Biodiversity across spatial and temporal scales: problems and opportunities. For Ecol Manag 115:113–126

    Article  Google Scholar 

  • Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landscape Ecol 14:567–575

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin

    Google Scholar 

  • Chetkiewicz C-LB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46:1036–1047

    Article  Google Scholar 

  • Cioldi F, Baltensweiler A, Brändli U-B, Duc P, Ginzler C, Herold Bonardi A, Thürig E, Ulmer U (2010) Waldressourcen. In: Brändli U-B (ed) Schweizerisches Landesforstinventar: Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, WSL, Birmensdorf and Bundesamt für Umwelt, BAFU, Bern

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Coops NC, Duffe J, Koot C (2010) Assessing the utility of lidar remote sensing technology to identify mule deer winter habitat. Can J Remote Sens 36:81–88

    Article  Google Scholar 

  • Duc P, Brändli U-B, Bornardi AH, Rösler E, Thürig E, Ulmer U, Frutig F, Rosset C, Kaufmann E (2010) Holzproduktion. In: Brändli U-B (ed) Schweizerisches Landesforstinventar: Ergebnisse der dritten Erhebung 2004-2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, WSL, Birmensdorf and Bundesamt für Umwelt, BAFU, Bern

    Google Scholar 

  • Duncan C, Kretz D, Wegmann M, Rabeil T, Pettorelli N (2014) Oil in the Sahara: mapping anthropogenic threats to Saharan biodiversity from space. Philos Trans R Soc B 369:20130191

    Article  Google Scholar 

  • Dunlavy JC (1935) Studies on the phyto-vertical distribution of birds. Auk 52:425–431

    Article  Google Scholar 

  • EIONET (2015) Population status and trends at the EU and Member State levels. http://bd.eionet.europa.eu/article12/summary?period=1&subject=A314. Accessed Nov 2015

  • Everitt B (2002) The Cambridge dictionary of statistics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Farrell SL, Collier BA, Skow KL, Long AM, Campomizzi AJ, Morrison ML, Hays KB, Wilkins RN (2013) Using LiDAR-derived vegetation metrics for high-resolution, species distribution models for conservation planning. Ecosphere 4:1–18

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Finck P (1990) Seasonal variation of territory size with the little owl (Athene noctua). Oecologia 83:68–75

    Article  Google Scholar 

  • Freeman E (2012) Presence-Absence Model Evaluation (PresenceAbsence). Package version 1.1.9. http://cran.rstudio.com/bin/windows/contrib/2.14/. Accessed Dec 2012

  • Gerber M (2011) Territory choice of the Wood Warbler Phylloscopus sibilatrix in Switzerland in relation to habitat structure and rodent density. Master Thesis, University of Zurich, Zurich

  • Glutz von Blotzheim UN, Bauer KM (1991) Handbuch der Vögel Mitteleuropas. AULA-Verlag GmbH, Wiesbaden

    Google Scholar 

  • Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology 91:1569–1576

    Article  PubMed  Google Scholar 

  • Goetz S, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108:254–263

    Article  Google Scholar 

  • Graf RF, Mathys L, Bollmann K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: Capercaillie in the Alps. For Ecol Manag 257:160–167

    Article  Google Scholar 

  • Grendelmeier A, Arlettaz R, Gerber M, Pasinelli G (2015) Reproductive performance of a declining forest passerine in relation to environmental and social factors: implications for species conservation. PLoS ONE 10:e0130954

    Article  PubMed  PubMed Central  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21

    Article  Google Scholar 

  • Hawbaker TJ, Gobakken T, Lesak A, Trømborg Contrucci K, Radeloff V (2010) Light detection and ranging-based measures of mixed hardwood forest structure. For Sci 56(3):313–326

    Google Scholar 

  • Hobson KA, Van Wilgenburg SL, Wesolowski T, Maziarz M, Bijlsma RG, Grendelmeier A, Mallord JW (2014) A multi-isotope (δ2H, δ13C, δ15 N) approach to establishing migratory connectivity in Palearctic-Afrotropical migrants: an example using wood warblers Phylloscopus sibilatrix. Acta Ornithol 49:57–69

    Article  Google Scholar 

  • Hölzinger J (1999) Die Vögel Baden-Württembergs Singvögel 1. Eugen Ulmer GmbH & Co, Stuttgart

    Google Scholar 

  • Hosmer D, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76(2):297–307

    Article  Google Scholar 

  • Hutto RL (1985) Habitat selection by nonbreeding, migratory land birds. In: Cody ML (ed) Habitat selection in birds. Academic Press, Orlando, pp 455–476

    Google Scholar 

  • Isenburg M (2012) LAStools: award winning software for rapid LIDAR processing. http://www.cs.unc.edu/~isenburg/lastools/. Accessed Nov 2012

  • Jedrzejewska B, Jedrzejewski W (1998) Predation in vertebrate communities: the Bialowiezka primeval forest as a case study. Ecol Stud 135:1–450

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Jung K, Kaiser S, Böhm S, Nieschulze J, Kalko EKV (2012) Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J Appl Ecol 49:523–531

    Article  Google Scholar 

  • Korpel S (1995) Die Urwälder der Westkarpaten. Fischer, Stuttgart

    Google Scholar 

  • Kühn B (2015) The role of caterpillar abundance and phenology for breeding success, territory choice and population size of the declining wood warbler (Phylloscopus sibilatrix). Master Thesis, University of Zurich, Zurich

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. BioSience 52:19–30

    Article  Google Scholar 

  • Luoto M, Kuusaari M, Toivonen T (2002) Modelling butterfly distribution based on remote sensing data. J Biogeogr 29:1027–1037

    Article  Google Scholar 

  • Mallord JW, Charman EC, Cristinacce A, Orsman CJ (2012) Habitat associations of Wood Warblers Phylloscopus sibilatrix breeding in Welsh oakwoods. Bird Stud 59:403–415

    Article  Google Scholar 

  • Mazerolle MJ (2006) Improving data analysis in herpetology: using Akaike’s Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27:169–180

    Article  Google Scholar 

  • Mazerolle MJ (2012) Model selection and multimodel inference based on (Q) AIC (c) (AICcmodavg), Version 1.28. http://cran.rstudio.com/bin/windows/contrib/2.14/. Accessed Dec 2012

  • Merrill T, Mattson DJ, Wright RG, Quigley HB (1999) Defining landscapes suitable for restoration of grizzly bears Ursus arctos in Idaho. Biol Conserv 87:231–248

    Article  Google Scholar 

  • MeteoSchweiz (2014) Normwerte 1981-2010: Niederschlagssumme. Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich

    Google Scholar 

  • Meyer P, Tabaku V, von Lüpke B (2003) Die Struktur albanischer Rotbuchen-Urwälder: Ableitungen für eine naturnahe Buchenwirtschaft. Forstw Cbl 122:47–58

    Article  Google Scholar 

  • Möller AP (1990) Changes in the size of avian breeding territories in relation to the nesting cycle. Anim Behav 40:1070–1079

    Article  Google Scholar 

  • Mollet P, Birrer S, Naef-Daenzer B, Naef-Daenzer L, Spaar R, Zbinden N (2006) Situation der Vogelwelt im Schweizer Wald. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • Müller J (2005) Waldstrukturen als Steuergrösse für Artengemeinschaften in kollinen bis submontanen Buchenwäldern. Dissertation, Technische Universität München, Munchen

  • Müller J, Bae S, Röder J, Chao A, Didham RK (2014) Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. For Ecol Manag 312:129–137

    Article  Google Scholar 

  • Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905

    Article  Google Scholar 

  • Müller J, Moning C, Bässler C, Heurich M, Brandl R (2009) Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl Ecol 10:671–681

    Article  Google Scholar 

  • Næsset E (2005) Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 98:356–370

    Article  Google Scholar 

  • Nelson R, Keller C, Ratnaswamy M (2005) Locating and estimating the extent of Delmarva fox squirrel habitat using an airborne LiDAR profiler. Remote Sens Environ 96:292–301

    Article  Google Scholar 

  • Ørka HO, Næsset E, Bollandsås OM (2010) Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sens Environ 114:1445–1461

    Article  Google Scholar 

  • Palminteri S, Powell GVN, Asner GP, Peres CA (2012) LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. Remote Sens Environ 127:98–105

    Article  Google Scholar 

  • Parent JR, Volin JC (2014) Assessing the potential for leaf-off lidar data to model canopy closure in temperate deciduous forests. ISPRS J Photogramm Remote Sens 95:134–145

    Article  Google Scholar 

  • Park C (2007) A dictionary of environment and conservation, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification—is it useful? Am Nat 4:473–484

    Article  Google Scholar 

  • Pasinelli G, Grendelmeier A, Gerber M, Arlettaz, R (2016) Rodent-avoidance, topography and forest structure shape territory selection of a forest bird. BMC Ecol (in press)

  • Pasinelli G, Hegelbach J, Reyer H-U (2001) Spacing behavior of the middle spotted woodpecker in central Europe. J Wildl Manag 65:432–441

    Article  Google Scholar 

  • Pavlovic A (2009) Raumnutzung von Waldstrukturen durch Phylloscopus-Arten anhand von Scannerdaten. Diplomarbeit, Fachhochschule Weihenstephan, Freising

  • Pettorelli N, Kamran S, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc B 369:20130190

    Article  Google Scholar 

  • Piotrowska M, Wesolowski T (1989) The breeding ecology and behaviour of the chiffchaff Phylloscopus collybita in primaeval and managed stands of Bialowieza Forest (Poland). Acta Ornithol 25:25–76

    Google Scholar 

  • Pontailler J-Y, Faille A, Lemée G (1997) Storms drive successional dynamics in natural forests: a case study in Fontainebleau forest (France). For Ecol Manag 98:1–15

    Article  Google Scholar 

  • Quelle M, Tiedemann G (1972) Strukturanalyse von Waldlaubsängerrevieren im Raum Bielefeld. Abh Landesmus Nat Münst Westfal 34:95–102

    Google Scholar 

  • Reidy JL, Thompson FR III, Amundson C, O’Donnell L (2015) Landscape and local effects on occupancy and densities of an endangered wood-warbler in an urbanizing landscape. Landscape Ecol. doi:10.1007/s10980-015-0250-0

    Google Scholar 

  • Reinhardt A, Bauer H-G (2009) Analyse des starken Bestandesrückgangs beim Waldlaubsänger Phylloscopus sibilatrix im Bodenseegebiet. Vogelwarte 47:23–39

    Google Scholar 

  • Rozenbergar D, Mikac S, Anic I, Diaci J (2007) Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech-fir forest reserves in South East Europe. Forestry 80:431–443

    Article  Google Scholar 

  • Scherzinger W (1996) Naturschutz im Wald—Qualitätsziele einer dynamischen Waldentwicklung. Ulmer, Stuttgart

    Google Scholar 

  • Schifferli A, Géroudet P, Winkler R, Jacquat B (1980) Verbreitungsatlas der Brutvögel der Schweiz: kartographische Darstellung des Brutvorkommens aller einheimischen Vogelarten in den Jahren 1972 bis 1976. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (1998) Schweizer Brutvogelatlas: Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • Shaw DC, Freeman EA, Flick C (2002) The vertical occurrence of small birds in an old-growth douglas-fir-western hemlock forest Stand. Northwest Sci 76:322–334

    Google Scholar 

  • Smart LS, Swenson JJ, Christensen NL, Sexton JO (2012) Three-dimensional characterization of pine forest type and red-cockaded woodpecker habitat by small-footprint, discrete-return lidar. For Ecol Manag 281:100–110

    Article  Google Scholar 

  • Sperduto MB, Congalton RG (1996) Predicting rare orchid (small whorled pogonia) habitat using GIS. Photogram Eng Remote Sens 62:1269–1279

    Google Scholar 

  • St-Louis V, Pidgeon AM, Kuemmerle T, Sonnenschein R, Radeloff VC, Clayton MK, Locke BA, Bash D, Hostert P (2014) Modelling avian biodiversity using raw, unclassified satellite imagery. Philos Trans R Soc B 369:20130197

    Article  Google Scholar 

  • Swiss Federal Statistical Office (2010) Waldmischungsgrad. http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/waldmischungsgrad.html. Accessed Dec 2012

  • swisstopo (2012) DOM. http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/height/dom_dtm-av.html. Accessed Dec 2012

  • swisstopo (2013) swissALTI3D. http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/height/swissALTI3D.html. Accessed Apr 2013

  • swisstopo (2014) swiss TLM3D. http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/swissTLM3D.html. Accessed Feb 2014

  • swisstopo (2015) DHM25. http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html. Accessed Aug 2015

  • Trainor AM, Walters JR, Morris WF, Sexton J, Moody A (2013) Empirical estimation of dispersal resistance surfaces: a case study with red-cockaded woodpeckers. Landscape Ecol 28:767–775

    Article  Google Scholar 

  • Vierling KT, Bässler C, Brandl R, Vierling LA, Weiss I, Müller J (2011) Spinning a laser web: predicting spider distributions using LiDAR. Ecol Appl 21:577–588

    Article  CAS  PubMed  Google Scholar 

  • Vierling KT, Swift CE, Hudak AT, Vogeler JC, Vierling LA (2014) How much does the time lag between wildlife field-data collection and LiDAR-data acquisition matter for studies of animal distributions? A case study using bird communities. Remote Sens Lett 5:185–193

    Article  Google Scholar 

  • Vierling KT, Vierling LA, Gould W, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6:90–98

    Article  Google Scholar 

  • Vierling LA, Vierling KT, Adam P, Hudak AT (2013) Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale. PLoS ONE 8:1–13

    Article  Google Scholar 

  • Vogeler JC, Hudak AT, Vierling LA, Vierling KT (2013) Lidar-derived canopy architecture predicts Brown Creeper occupancy of two western coniferous forests. Condor 115:614–622

    Article  Google Scholar 

  • Wasser L, Day R, Chasmer L, Taylor A (2013) Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions. PLoS ONE 8:e54776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesolowski T, Maziarz M (2009) Changes in breeding phenology and performance of Wood Warblers Phylloscopus sibilatrix in a primeval forest: a thirty-year perspective. Acta Ornithol 44:69–80

    Article  Google Scholar 

  • Whittingham MJ, Swetnam RD, Wilson JD, Chamberlan DE, Freckleton RP (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280

    Article  Google Scholar 

  • Wikar D, Ciach M, Bylicka M, Bylicka M (2008) Changes in habitat use by the common buzzard (Buteo buteo L.) during non-breeding season in relation to winter conditions. Pol J Ecol 56:119–125

    Google Scholar 

  • Wiktander U, Olsson O, Nilsson SG (2001) Seasonal variation in home-range size, and habitat area requirement of the lesser spotted woodpecker (Dendrocopos minor) in southern Sweden. Biol Conserv 100:387–395

    Article  Google Scholar 

  • Winter S, Flade M, Schumacher H, Kerstan E, Möller G (2005) The importance of near-natural stand structures for the biocoenosis of lowland beech forests. For Snow Landsc Res 79:127–144

    Google Scholar 

  • Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2013) Image texture predicts avian density and species richness. PLoS ONE 8:e63211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. For Ecol Manag 307:303–312

    Article  Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

  • Zweig MH, Campell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Alexander Grendelmeier and Michael Gerber for collecting data on wood warbler nests and territory locations. We thank Rafael Wüest for his support with the statistical analyses and Peter Rotach for a valuable discussion. We are grateful for helpful comments to previous versions of the manuscript provided by Kurt Bollmann, Jeff Hepinstall-Cymerman and three anonymous reviewers. For financial support, we thank the Swiss National Science Foundation (grant no. 31003A_143879 to G. P. and Raphaël Arlettaz), Hilfsfonds für die Schweizerische Vogelwarte Sempach, PD-Stiftung der Universität Zürich, Styner-Stiftung, Stotzer-Kästli-Stiftung and Lotteriefonds des Kantons Solothurn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nica Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, N., Kienast, F., Ginzler, C. et al. Using remote-sensing data to assess habitat selection of a declining passerine at two spatial scales. Landscape Ecol 31, 1919–1937 (2016). https://doi.org/10.1007/s10980-016-0370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0370-1

Keywords