Landscape Ecology

, Volume 31, Issue 1, pp 101–117 | Cite as

Convergence of microclimate in residential landscapes across diverse cities in the United States

  • Sharon J. HallEmail author
  • J. Learned
  • B. Ruddell
  • K. L. Larson
  • J. Cavender-Bares
  • N. Bettez
  • P. M. Groffman
  • J. M. Grove
  • J. B. Heffernan
  • S. E. Hobbie
  • J. L. Morse
  • C. Neill
  • K. C. Nelson
  • J. P. M. O’Neil-Dunne
  • L. Ogden
  • D. E. Pataki
  • W. D. Pearse
  • C. Polsky
  • R. Roy Chowdhury
  • M. K. Steele
  • T. L. E. Trammell
Research Article



The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as residential landscapes that may affect human comfort.


We tested the urban homogenization hypothesis which states that structure and function in cities exhibit ecological “sameness” across diverse regions relative to the native ecosystems they replaced.


We deployed portable micrometeorological sensors to compare air temperature and humidity in residential yards and native landscapes across six U.S. cities that span a range of climates (Phoenix, AZ; Los Angeles, CA; Minneapolis-St. Paul, MN; Boston, MA; Baltimore, MD; and Miami, FL).


Microclimate in residential ecosystems was more similar among cities than among native ecosystems, particularly during the calm morning hours. Maximum regional actual evapotranspiration (AET) was related to the morning residential microclimate effect. Residential yards in cities with maximum AET <50–65 cm/year (Phoenix and Los Angeles) were generally cooler and more humid than nearby native shrublands during summer mornings, while yards in cities above this threshold were generally warmer (Baltimore and Miami) and drier (Miami) than native forests. On average, temperature and absolute humidity were ~6 % less variable among residential ecosystems than among native ecosystems from diverse regions.


These data suggest that common residential land cover and structural characteristics lead to microclimatic convergence across diverse regions at the continental scale.


Urban homogenization Residential lawn Microclimate Urban heat island (UHI) Humidity Urban protected area 



We are grateful to numerous technical staff, students, and volunteers who assisted with microclimate data collection, including Erin Barton, Matthew Camba, Emma Dixon, La’Shaye Ervin, Caitlin Holmes, Richard McHorney, Miguel Morgan, Joseph Rittenhouse, Anna Royar, Jehane Samaha, Sydney Schiffner, Julea Shaw, Anissa Vega, Elisabeth Ward, and Megan Wheeler. We also thank Darrel Jenerette for reviewing an earlier draft of this manuscript. This project was supported by several collaborative grants from the Macrosystems Biology Program at NSF (EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 1241960, and 121238320), and by the Earth Systems Modeling program at NSF (EF-1049251). This work was also supported in part by the NSF Long-term Ecological Research Program in Baltimore (BES LTER, DEB-0423476), Phoenix (CAP LTER, BCS-1026865), Plum Island (PIE LTER Boston; OCE-1058747 and 1238212), Cedar Creek (CDR LTER, Minneapolis–St Paul; DEB-1234162), and Florida Coastal Everglades (FCE LTER, Miami; DBI-0620409).

Supplementary material

10980_2015_297_MOESM1_ESM.pdf (11.9 mb)
Supplementary material 1 (PDF 12226 kb)


  1. APA (2000) Policy guide on planning for sustainability. Adopted by chapter delegate assembly, April 16, 2000; Ratified by Board of Directors, April 17, 2000. American Planning Association, New York, p 15Google Scholar
  2. Avolio ML, Pataki DE, Pincetl S, Gillespie TW, Jenerette GD, McCarthy HR (2015) Understanding preferences for tree attributes: the relative effects of socio-economic and local environmental factors. Urban Ecosyst 18:73–86CrossRefGoogle Scholar
  3. Bang C, Sabo JL, Faeth SH (2010) Reduced wind speed improves plant growth in a Desert city. PLoS One 5(6):e11061. doi: 10.1371/journal.pone.0011061 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barreca AI (2012) Climate change, humidity, and mortality in the United States. J Environ Econ Manag 63(1):19–34CrossRefGoogle Scholar
  5. Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the universal thermal climate index (UTCI). Geogr Pol 86(1):5–10CrossRefGoogle Scholar
  6. Bonan GB (2000) The microclimates of a suburban Colorado (USA) landscape and implications for planning and design. Landsc Urban Plan 49(3):97–114CrossRefGoogle Scholar
  7. Brazel AJ, Selover N, Vose R, Heisler G (2000) The tale of two climates: baltimore and Phoenix urban LTER sites. Clim Res 15:123–135CrossRefGoogle Scholar
  8. Brazel A, Gober P, Lee SJ, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E (2007) Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim Res 33(2):171–182CrossRefGoogle Scholar
  9. Bröde P, Krüger E, Rossi F, Fiala D (2012) Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI: a case study in Southern Brazil. Int J Biometeorol 56(3):471–480PubMedCrossRefGoogle Scholar
  10. Budyko MI (1974) Climate and life. Academic Press, New YorkGoogle Scholar
  11. Buyantuyev A, Wu J (2009) Urbanization alters spatiotemporal patterns of ecosystem primary production: a case study of the Phoenix metropolitan region, USA. J Arid Environ 73:512–520CrossRefGoogle Scholar
  12. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88CrossRefGoogle Scholar
  13. Carey RO, Hochmuth GJ, Martinez CJ, Boyer TH, Dukes MD, Toor GS, Cisar JL (2013) Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities. Environ Pollut 173:138–149. doi: 10.1007/s10980-015-0297-y PubMedCrossRefGoogle Scholar
  14. Cengel YA, Ghajar AJ (2015) Heating and cooling of buildings, chapter 16. Heat and mass transfer: fundamentals and applications, 5th edn. McGraw-Hill, LondonGoogle Scholar
  15. Cheng L, Xu Z, Wang D, Cai X (2011) Assessing interannual variability of evapotranspiration at the catchment scale using satellite-based evapotranspiration data sets. Water Resour Res 47(9):W09509CrossRefGoogle Scholar
  16. Chow WTL, Brazel AJ (2012) Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build Environ 47:170–181CrossRefGoogle Scholar
  17. Chow WTL, Brennan D, Brazel AJ (2012) Urban heat island research in Phoenix, Arizona: theoretical contributions and policy applications. Bull Am Meteorol Soc 93(4):517–530CrossRefGoogle Scholar
  18. Chowdhury RR, Larson K, Grove M, Polsky C, Cook E, Onsted J, Ogden L (2011) A multi-scalar approach to theorizing socio-ecological dynamics of urban residential landscapes. Cities Environ 4(1):6Google Scholar
  19. ClimateCHIP (2015) Excel heat stress calculator. Climate CHIP,, New ZealandGoogle Scholar
  20. Cole L, Foster S (2001) From the ground up: Environmental racism & the rise of the environmental justice movement. New York University Press, New YorkGoogle Scholar
  21. Cook EM, Hall SJ, Larson KL (2012) Residential landscapes as social-ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst 15(1):19–52CrossRefGoogle Scholar
  22. Cronon W (1991) Nature’s metropolis: Chicago and the Great West, 1848–1893. W. W. Norton and Company, New YorkGoogle Scholar
  23. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155(1):80–87PubMedCrossRefGoogle Scholar
  24. Declet-Barreto J, Brazel AJ, Martin CA, Chow WTL, Harlan SL (2013) Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosyst 16(3):617–635CrossRefGoogle Scholar
  25. Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build 35(1):69–76CrossRefGoogle Scholar
  26. Gao J, Sun Y, Lu Y, Li L (2014) Impact of ambient humidity on child health: a systematic review. PLoS One. doi: 10.1371/journal.pone.0112508 Google Scholar
  27. Gobster PH (1994) The urban savanna: reuniting ecological preference and function. Restor Manag Notes 12:64–71Google Scholar
  28. Grimmond S (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173(1):83–88CrossRefGoogle Scholar
  29. Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson K, O'Neil-Dunne J, Ogden L, Pataki DE, Polsky C, Chowdhury RR, Steele MK (2014) Ecological homogenization of urban USA. Front Ecol Environ 12(1):74–81CrossRefGoogle Scholar
  30. Guhathakurta S, Gober P (2010) Residential land use, the urban heat island, and water use in Phoenix: a path analysis. J Plan Educ Res 30(1):40–51CrossRefGoogle Scholar
  31. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863PubMedCrossRefGoogle Scholar
  32. Hartmann DL (1994) Global physical climatology. Academic Press, New YorkGoogle Scholar
  33. Heffernan JB, Soranno PA, Angilletta MJ Jr, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12(1):5–14CrossRefGoogle Scholar
  34. Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114:504–513CrossRefGoogle Scholar
  35. Jankovic V (2013) A historical review of urban climatology and the atmospheres of the industrialized world. Wiley Interdiscip Rev 4(6):539–553Google Scholar
  36. Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol 22(3):353–365CrossRefGoogle Scholar
  37. Jenerette GD, Harlan SL, Stefanov WL, Martin CA (2011) Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol Appl 21(7):2637–2651PubMedCrossRefGoogle Scholar
  38. Jenerette GD, Miller G, Buyantuev A, Pataki DE, Gillespie T, Pincetl S (2013) Urban vegetation and income segregation in drylands: a synthesis of seven metropolitan regions in the southwestern United States. Environ Res Lett 8(4):044001CrossRefGoogle Scholar
  39. Jesdale BM, Morello-Frosch R, Cushing L (2013) The racial/ethnic distribution of heat risk-related land cover in relation to residential segregation. Environ Health Perspect 121(7):811–817PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jones J, Creed I, Hatcher K, Warren R, Adams M, Benson M, Boose E, Brown W, Campbell J, Covich A, Clow D, Dahm C, Elder K, Ford C, Grimm N, Henshaw D, Larson K, Miles E, Miles K, Sebestyen S, Spargo A, Stone A, Vose J, Williams M (2012) Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Bioscience 62(4):390–404CrossRefGoogle Scholar
  41. Kenward A, Yawitz D, Sanford T, Wang R (2014) Summer in the city: hot and getting hotter. Clim Cent, Princeton, pp 1–29Google Scholar
  42. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expon Anal Environ Epidemiol 11(3):231–252CrossRefGoogle Scholar
  43. Knapp S, Dinsmore L, Fissore C, Hobbie SE, Jakobsdottir I, Kattge J, King JY, Klotz S, McFadden JP, Cavender-Bares J (2012) Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93(8):S83–S98CrossRefGoogle Scholar
  44. Kunstler JH (1993) Geography of nowhere: the rise and decline of America’s man-made landscape. Simon and Schuster, New YorkGoogle Scholar
  45. Larson DW, Matthes U, Kelly PE, Lundholm JT, Gerrath JA (2004) The urban cliff revolution. Fitzhenry & Whiteside, TorontoGoogle Scholar
  46. Larson KL, Cook E, Strawhacker C, Hall SJ (2010) The influence of diverse values, ecological structure, and geographic context on residents’ multifaceted landscaping decisions. Hum Ecol 38(6):747–761CrossRefGoogle Scholar
  47. Larson KL, Nelson KC, Samples SR, Hall SJ, Bettez N, Cavender-Bares J, Groffman PM, Grove M, Heffernan JB, Hobbie SE, Learned J, Morse JL, Neill C, Ogden LA, O’Neil-Dunne J, Pataki DE, Polsky C, Chowdhury RR, Steele M, Trammell TLE (2015) Ecosystem services in managing residential landscapes: Priorities, value dimensions, and cross-regional patterns. Urban Ecosyst 1-19Google Scholar
  48. Lin T-P, Matzarakis A, Hwang R-L (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213–221CrossRefGoogle Scholar
  49. Litvak E, Bijoor N, Pataki D (2013) Adding trees to irrigated turfgrass lawns may be a water-saving measure in semi-arid environments. Ecohydrology 7(5):1314–1330Google Scholar
  50. Lowen AC, Steel J (2014) Roles of humidity and temperature in shaping Influenza seasonality. J Virol 88(14):7692–7695PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lundholm JT (2006) Green roofs and facades: a habitat template approach. Urban Habitats 4(1):87–101Google Scholar
  52. Lundholm JT, Marlin A (2006) Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst 9:139–159CrossRefGoogle Scholar
  53. Mander P (2012) How to convert relative humidity to absolute humidity. Accessed Jan 2015
  54. Marshall T, Ruddell BL (unpublished) Performance evaluation of a low-cost printable radiation shieldGoogle Scholar
  55. Martini NF, Nelson KC, Hobbie SE, Baker LC (2013) Why “Feed the Lawn”? Exploring the influence of residential turf grass fertilization in the Minneapolis-Saint Paul Metropolitan Area. Environ Behav. doi: 10.1177/0013916513492418 Google Scholar
  56. McKinney M (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  57. Middel A, Brazel AJ, Gober P, Myint SW, Chang H (2012) Land cover, climate, and the summer surface energy balance in Phoenix, AZ, and Portland, OR. Int J Climatol 32(13):2020–2032CrossRefGoogle Scholar
  58. Middel A, Haeb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc Urban Plan 122:16–28CrossRefGoogle Scholar
  59. Mitchell BC, Chakraborty J (2014) Urban heat and climate justice: a landscape of thermal inequity in Pinellas County, Florida. Geogr Rev 104(4):459–480CrossRefGoogle Scholar
  60. NOAA National Weather Service (2015) Glossary. Accessed 7 Sept 2015
  61. Nowak DJ, Greenfield EJ (2012) Tree and impervious cover change in U.S. cities. Urban For Urban Green 11:21–30CrossRefGoogle Scholar
  62. Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24Google Scholar
  63. Oke TR (1987) Boundary layer climates. Methuen Publishing, LondonGoogle Scholar
  64. Orians G (1986) An ecological and evolutionary approach to landscape aesthetics. In: Penning-Rowsell EC, Lowenthal D (eds) Landscape meanings and values. Allen and Unwin, London, pp 3–25Google Scholar
  65. Peng LLH, Jim CY (2013) Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 6(2):598–618CrossRefGoogle Scholar
  66. Polsky C, Grove JM, Knudson C, Groffman PM, Bettez N, Cavender-Bares J, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson KC, Ogden LA, O'Neil-Dunne J, Pataki DE, Chowdhury RR, Steele MK (2014) Assessing the homogenization of urban land management with an application to us residential lawn care. Proc Natl Acad Sci USA 111(12):4432–4437PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pouyat RV, Pataki DE, Belt KT, Groffman PM, Hom J, Band LE (2007) Effects of urban land-use change on biogeochemical cycles. Terrestrial ecosystems in a changing World. Springer, Berlin/Heidelberg/New York, pp 45–58CrossRefGoogle Scholar
  68. Robbins P (2007) Lawn people: how grasses, weeds, and chemicals make us who we are. Temple University Press, PhiladelphiaGoogle Scholar
  69. Robbins P, Polderman A, Birkenholtz T (2001) Lawns and toxins: an ecology of the city. Cities 18(6):369–380CrossRefGoogle Scholar
  70. Roth M (2007) Review of urban climate research in (sub)tropical regions. Int J Climatol 27:1859–1873CrossRefGoogle Scholar
  71. Sanford WE, Selnick DL (2013) Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data. J Am Water Resour Assoc 49(1):217–230CrossRefGoogle Scholar
  72. Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci USA 106(9):3243–3248PubMedPubMedCentralCrossRefGoogle Scholar
  73. Spronken-Smith R, Oke T, Lowry W (2000) Advection and the surface energy balance across an irrigated urban park. Int J Climatol 20:1033–1047CrossRefGoogle Scholar
  74. St. Hilaire R, VanLeeuwen DM, Torres P (2010) Landscape preferences and water conservation choices of residents in a high desert environment. HortTechnology 20(2):308–314Google Scholar
  75. Stathopoulos T, Wu H, Zacharias J (2004) Outdoor human comfort in an urban climate. Build Environ 39(3):297–305CrossRefGoogle Scholar
  76. Steele MK, Heffernan JB, Bettez N, Cavender-Bares J, Groffman PM, Grove JM, Hall S, Hobbie SE, Larson K, Morse JL, Neill C, Nelson KC, O'Neil-Dunne J, Ogden L, Pataki DE, Polsky C, Chowdhury RR (2014) Convergent surface water distributions in us cities. Ecosystems 17(4):685–697Google Scholar
  77. Stone B, Vargo J, Habeeb D (2012) Managing climate change in cities: will climate action plans work? Landsc Urban Plan 107(3):263–271CrossRefGoogle Scholar
  78. Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie A, Viboud C (2013) Environmental predictors of seasonal Influenza epidemics across temperate and tropical climates. PLoS Pathog. doi: 10.1371/journal.ppat.1003194 PubMedGoogle Scholar
  79. UN (2014) World urbanization prospects: The 2014 Revision. Department of Economic and Social Affairs, Population Division, United NationsGoogle Scholar
  80. Wendt KM, Coffin BA (1988) Natural vegetation of Minnesota at the time of the public land survey, 1847–1907. In: Winchell NH (ed) Program. Minnesota Department of Natural Resources, pp 1–6Google Scholar
  81. Wong KV, Chaudhry S (2012) Use of satellite images for observational and quantitative analysis of urban heat islands around the world. J Energy Res Technol 134(042101):1–8Google Scholar
  82. Wu XM, Fan ZT, Ohman-Strickland P (2010) Time-location patterns of a population living in an air pollution hotspot. J Environ Public Health. doi: 10.1155/2010/625461 PubMedGoogle Scholar
  83. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett. doi: 10.1029/2004GL020137 Google Scholar
  84. Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511(7508):216–219PubMedCrossRefGoogle Scholar
  85. Zhu P, Zhang Y (2008) Demand for urban forests in United States cities. Landsc Urban Plan 84(3–4):293–300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sharon J. Hall
    • 1
    Email author
  • J. Learned
    • 1
  • B. Ruddell
    • 2
  • K. L. Larson
    • 3
  • J. Cavender-Bares
    • 4
  • N. Bettez
    • 5
  • P. M. Groffman
    • 5
  • J. M. Grove
    • 6
  • J. B. Heffernan
    • 7
  • S. E. Hobbie
    • 4
  • J. L. Morse
    • 8
  • C. Neill
    • 9
  • K. C. Nelson
    • 10
  • J. P. M. O’Neil-Dunne
    • 11
  • L. Ogden
    • 12
  • D. E. Pataki
    • 13
  • W. D. Pearse
    • 14
    • 15
  • C. Polsky
    • 16
  • R. Roy Chowdhury
    • 17
  • M. K. Steele
    • 18
  • T. L. E. Trammell
    • 19
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Fulton Schools of EngineeringArizona State UniversityTempeUSA
  3. 3.Schools of Geographical Sciences and Urban Planning and SustainabilityArizona State UniversityTempeUSA
  4. 4.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA
  5. 5.Cary Institute of Ecosystem StudiesMillbrookUSA
  6. 6.USDA Forest ServiceBaltimore Field StationBaltimoreUSA
  7. 7.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  8. 8.Department of Environmental Science and Management, School of EnvironmentPortland State UniversityPortlandUSA
  9. 9.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  10. 10.Department of Forest Resources and Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt. PaulUSA
  11. 11.Spatial Analysis Lab, Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonUSA
  12. 12.Department of AnthropologyDartmouth CollegeHanoverUSA
  13. 13.Department of BiologyUniversity of UtahSalt Lake CityUSA
  14. 14.Department of BiologyMcGill UniversityMontréalCanada
  15. 15.Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada
  16. 16.Center for Environmental StudiesFlorida Atlantic UniversityDavieUSA
  17. 17.Department of GeographyIndiana UniversityBloomingtonUSA
  18. 18.Department of Crop and Soil Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  19. 19.Department of Plant and Soil SciencesUniversity of DelawareNewarkUSA

Personalised recommendations