Skip to main content

Advertisement

Log in

Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern.

Objectives

We present one such approach, spatial association of scalable hexagons (SASH), which identifies locations where ecological phenomena occur at greater or lower frequencies than expected by chance. This approach is based on a sampling frame optimized for spatial neighborhood analysis, adjustable to the appropriate spatial resolution, and applicable to multiple data types.

Methods

We divided portions of the United States into scalable equal-area hexagonal cells and, using three types of data (field surveys, aerial surveys, satellite imagery), identified geographic clusters of forested areas having high and low values for (1) invasive plant diversity and cover, (2) mountain pine beetle-induced tree mortality, and (3) wildland forest fire occurrences.

Results

Using the SASH approach, we detected statistically significant patterns of plant invasion, bark beetle-induced tree mortality, and fire occurrence density that will be useful for understanding macroscale patterns and processes associated with each forest health threat, for assessing its ecological and economic impacts, and for identifying areas where specific management activities may be needed.

Conclusions

The presented method is a “big data” analysis tool with potential application for macrosystems ecology studies that require rigorous testing of hypotheses within a spatial framework. This method is a standard component of annual national reports on forest health status and trends across the United States and can be applied easily to other regions and datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anselin L (1992) Spatial data analysis with GIS: an introduction to application in the social sciences. National Center for Geographic Information and Analysis, Santa Barbara

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Atkinson PM, Tate NJ (2000) Spatial scale problems and geostatistical solutions: a review. Prof Geogr 52(4):607–623. doi:10.1111/0033-0124.00250

    Article  Google Scholar 

  • Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program: national sampling design and estimation procedures. USDA Forest Service, Southern Research Station, Asheville

    Google Scholar 

  • Bechtold WA, Scott CT (2005) The forest inventory and analysis plot design. In: Bechtold WA, Patterson PL (eds) The enhanced forest inventory and analysis program—national sampling design and estimation procedures., General Technical Report SRS-80United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 27–42

    Google Scholar 

  • Bone C, Wulder MA, White JC, Robertson C, Nelson TA (2013) A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran’s I statistic. Appl Geogr 40:161–170. doi:10.1016/j.apgeog.2013.02.011

    Article  Google Scholar 

  • Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. Bioscience 45(1):16–24

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Costa MA, Kulldorff M (2009) Applications of spatial scan statistics: a review. Scan Statistics: methods and applications. Birkhauser, Boston. doi:10.1007/978-0-8176-4749-0_6

    Google Scholar 

  • Coulston JW, Riitters KH (2003) Geographic analysis of forest health indicators using spatial scan statistics. Environ Manage 31(6):764–773

    Article  PubMed  Google Scholar 

  • Crall AW, Meyerson LA, Stohlgren TJ, Jarnevich CS, Newman GJ, Graham J (2006) Show me the numbers: what data currently exist for non-native species in the USA? Front Ecol Environ 4(8):414–418

    Article  Google Scholar 

  • Dark SJ, Bram D (2007) The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geogr 31(5):471–479. doi:10.1177/0309133307083294

    Article  Google Scholar 

  • Edmonds RL, Agee JK, Gara RI (2011) Forest health and protection, 2nd edn. Waveland Press Inc., Long Grove

    Google Scholar 

  • ESRI (2012) ArcMap 10.1. Environmental Systems Research Institute Inc., Redlands

  • Fotheringham AS, Wong DWS (1991) The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A 23(7):1025–1044. doi:10.1068/a231025

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Hawbaker TJ, Radeloff VC, Syphard AD, Zhu ZL, Stewart SI (2008) Detection rates of the MODIS active fire product in the United States. Remote Sens Environ 112(5):2656–2664. doi:10.1016/j.rse.2007.12.008

    Article  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao JF, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12(1):5–14. doi:10.1890/130017

    Article  Google Scholar 

  • Hernandez-Manrique OL, Sanchez-Fernandez D, Verdu JR, Numa C, Galante E, Lobo JM (2012) Using local autocorrelation analysis to identify conservation areas: an example considering threatened invertebrate species in Spain. Biodivers Conserv 21(8):2127–2137. doi:10.1007/s10531-012-0303-5

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6):1510–1520. doi:10.1890/07-1053.1

    Article  PubMed  Google Scholar 

  • Hong SY, O’Sullivan D (2012) Detecting ethnic residential clusters using an optimisation clustering method. Int J Geogr Inf Sci 26(8):1457–1477. doi:10.1080/13658816.2011.637045

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18. doi:10.1111/j.1365-2664.2008.01600.x

    Article  Google Scholar 

  • Iannone BV, Oswalt CM, Liebhold AM, Guo Q, Potter KM, Nunez-Mir GC, Oswalt SN, Pijanowski BC, Fei S (2015) Region-specific patterns and drivers of macroscale forest plant invasions. Divers Distrib 21:1181–1192

    Article  Google Scholar 

  • Jelinski DE, Wu JG (1996) The modifiable areal unit problem and implications for landscape ecology. Landscape Ecol 11(3):129–140. doi:10.1007/bf02447512

    Article  Google Scholar 

  • Johnston RJ, Ramachandran M (2014) Modeling spatial patchiness and hot spots in stated preference willingness to pay. Environ Resour Econ 59(3):363–387. doi:10.1007/s10640-013-9731-2

    Article  Google Scholar 

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83(1–2):244–262. doi:10.1016/s0034-4257(02)00076-7

    Article  Google Scholar 

  • Justice CO, Giglio L, Roy D, Boschetti L, Csiszar I, Davies D, Korontzi S, Schroeder W, O’Neal K, Morisette J (2011) MODIS-derived global fire products. In: Ramachandran B, Justice CO, Abrams MJ (eds) Land remote sensing and global environmental change: NASA’s earth observing system and the science of ASTER and MODIS. Springer, New York, pp 661–679

    Google Scholar 

  • Kamei M, Nakagoshi N (2006) Geographic assessment of present protected areas in Japan for representativeness of forest communities. Biodivers Conserv 15(14):4583–4600. doi:10.1007/s10531-005-5822-x

    Article  Google Scholar 

  • Kelsall JE, Diggle PJ (1995) Non-parametric estimation of spatial variation in relative risk. Stat Med 14(21–22):2335–2342. doi:10.1002/sim.4780142106

    Article  PubMed  CAS  Google Scholar 

  • Krylov A, McCarty JL, Potapov P, Loboda T, Tyukavina A, Turubanova S, Hansen MC (2014) Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ Res Lett 9(10):8. doi:10.1088/1748-9326/9/10/105007

    Article  Google Scholar 

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14(8):799–810. doi:10.1002/sim.4780140809

    Article  PubMed  CAS  Google Scholar 

  • Kulldorff M, Huang L, Konty K (2009) A scan statistic for continuous data based on the normal probability model. Int J Health Geogr 8:9. doi:10.1186/1476-072x-8-58

    Article  Google Scholar 

  • Kwan MP (2012) The uncertain geographic context problem. Ann Assoc Am Geogr 102(5):958–968. doi:10.1080/00045608.2012.687349

    Article  Google Scholar 

  • Laffan SW (2006) Assessing regional scale weed distributions, with an Australian example using Nassella trichotoma. Weed Res 46(3):194–206

    Article  Google Scholar 

  • Lepczyk CA, Hammer RB, Stewart SI, Radeloff VC (2007) Spatiotemporal dynamics of housing growth hotspots in the North Central U.S. from, 1940 to 2000. Landscape Ecol 22(6):939–952

    Article  Google Scholar 

  • Levy O, Ball BA, Bond-Lamberty B, Cheruvelil KS, Finley AO, Lottig NR, Punyasena SW, Xiao JF, Zhou JZ, Buckley LB, Filstrup CT, Keitt TH, Kellner JR, Knapp AK, Richardson AD, Tcheng D, Toomey M, Vargas R, Voordeckers JW, Wagner T, Williams JW (2014) Approaches to advance scientific understanding of macrosystems ecology. Front Ecol Environ 12(1):15–23. doi:10.1890/130019

    Article  Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for US policy and management. Ecol Appl 16(6):2035–2054. doi:10.1890/1051-0761(2006)016[2035:birfup]2.0.co;2

  • Lundquist JE, Camp AE, Tyrrell ML, Seybold SJ, Cannon P, Lodge DJ (2011) Earth, wind and fire: abiotic factors and the impacts of global environmental change on forest health. In: Castello JD, Teale SA (eds) Forest health: an integrated perspective. Cambridge University Press, New York, pp 195–243

    Chapter  Google Scholar 

  • Ma ZH, Zuckerberg B, Porter WF, Zhang LJ (2012) Use of localized descriptive statistics for exploring the spatial pattern changes of bird species richness at multiple scales. Appl Geogr 32(2):185–194. doi:10.1016/j.apgeog.2011.05.005

    Article  Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7(3):142–149. doi:10.1890/070096

    Article  Google Scholar 

  • Meddens AJH, Hicke JA, Ferguson CA (2012) Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol Appl 22(7):1876–1891

    Article  PubMed  Google Scholar 

  • National Interagency Coordination Center (2013) Wildland fire summary and statistics annual report: 2012. http://www.predictiveservices.nifc.gov/intelligence/2012_statssumm/intro_summary.pdf. Accessed 14 May 2013

  • National Interagency Coordination Center (2014) Wildland fire summary and statistics annual report: 2013. http://www.predictiveservices.nifc.gov/intelligence/2013_Statssumm/intro_summary13.pdf. Accessed 28 May 2014

  • National Interagency Coordination Center (2015) Wildland fire summary and statistics annual report: 2014. http://www.predictiveservices.nifc.gov/intelligence/2014_Statssumm/intro_summary14.pdf. Accessed 11 May 2015

  • Nelson TA, Boots B (2008) Detecting spatial hot spots in landscape ecology. Ecography 31(5):556–566. doi:10.1111/j.0906-7590.2008.05548.x

    Article  Google Scholar 

  • Nelson T, Boots B, Wulder MA (2006) Large-area mountain pine beetle infestations: spatial data representation and accuracy. For Chron 82(2):243–252

    Article  Google Scholar 

  • Netto SMB, Silva AC, Nunes RA, Gattass M (2012) Analysis of directional patterns of lung nodules in computerized tomography using Getis statistics and their accumulated forms as malignancy and benignity indicators. Pattern Recognit Lett 33(13):1734–1740. doi:10.1016/j.patrec.2012.05.010

    Article  Google Scholar 

  • Oliver MA (2001) Determining the spatial scale of variation in environmental properties using the variogram. In: Tate NJ, Atkinson PM (eds) Modelling scale in geographical information science. Wiley, Chicester, pp 193–219

    Google Scholar 

  • Oliveira SLJ, Maier SW, Pereira JMC, Russell-Smith J (2015) Seasonal differences in fire activity and intensity in tropical savannas of northern Australia using satellite measurements of fire radiative power. Int J Wildland Fire 24(2):249–260. doi:10.1071/wf13201

    Google Scholar 

  • Openshaw S (1977) Geographical solution to scale and aggregation problems in region-building, partitioning and spatial modeling. Trans Inst Br Geogr 2(4):459–472. doi:10.2307/622300

    Article  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306

    Article  Google Scholar 

  • Oswalt CM, Fei S, Guo Q, Iannone BV, Oswalt S, Pijanowski B, Potter KM (2015) A subcontinental view of forest plant invasions using national inventory data. Neobiota 24:49–54

    Article  Google Scholar 

  • Palmer MW (2002) Scale detection using semivariograms and autocorrelograms. In: Gergel SE, Turner MG (eds) Learning landscape ecology: a practical guide to concepts and techniques. Springer, New York, pp 129–144

    Chapter  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504. doi:10.1016/j.tree.2009.03.016

    Article  PubMed  Google Scholar 

  • Portillo-Quintero C, Sanchez-Azofeifa A, do Espirito-Santo MM (2013) Monitoring deforestation with MODIS active fires in neotropical dry forests: an analysis of local-scale assessments in Mexico, Brazil and Bolivia. J Arid Environ 97:150–159. doi:10.1016/j.jaridenv.2013.06.002

    Article  Google Scholar 

  • Potter KM (2015a) Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2012. In: Potter KM, Conkling BL (eds) Forest health monitoring: national status, trends and analysis, 2013, vol general technical report SRS-207. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 37–53

    Google Scholar 

  • Potter KM (2015b) Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska 2013. In: Potter KM, Conkling BL (eds) Forest health monitoring: national status, trends and analysis, 2014, vol general technical report SRS-209. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 39–55

    Google Scholar 

  • Potter KM, Koch FH (2014) Phylogenetic community structure of forests across the conterminous United States: regional ecological patterns and forest health implications. For Sci 60(2):851–861. doi:10.5849/forsci.13-115

  • Potter KM, Paschke JL (2015) Large-scale patterns of insect and disease activity in the conterminous United States, Alaska, and Hawaii from the national insect and disease survey 2013. In: Potter KM, Conkling BL (eds) Forest health monitoring: national status, trends and analysis, 2014, vol general technical report SRS-209. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 19–38

    Google Scholar 

  • Potter KM, Woodall CW (2012) Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change. Ecol Appl 22(2):517–531

    Article  PubMed  Google Scholar 

  • Prestemon JP, Abt KL, Potter KM, Koch FH (2013) An economic assessment of mountain pine beetle timber salvage in the west. West J Appl For 28(4):143–153. doi:10.5849/wjaf.12-032

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58(6):501–517. doi:10.1641/b580607

    Article  Google Scholar 

  • Reams GA, Smith WD, Hansen MH, Bechtold WA, Roesch FA, Moisen GG (2005) The forest inventory and analsysis sampling frame. In: Bechtold WA, Patterson PL (eds) The enhanced forest inventory and analysis program—national sampling design and estimation procedures., General Technical Report SRS-80United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 11–26

    Google Scholar 

  • Ries P, Dix ME, Lelmini M, Thomas D (2004) National strategy and implementation plan for invasive species management. United States Department of Agriculture, Forest Service, Washington, DC

    Google Scholar 

  • Riitters KH, Coulston JW (2005) Hot spots of perforated forest in the eastern United States. Environ Manag 35(4):483–492. doi:10.1007/s00267-003-0220-1

    Article  Google Scholar 

  • Riitters KH, Tkacz B (2004) The U.S. forest health monitoring program. In: Wiersma GB (ed) Environmental monitoring. CRC Press, Boca Raton, pp 669–683

    Google Scholar 

  • Riitters KH, Wickham JD (2012) Decline of forest interior conditions in the conterminous United States. Sci Rep 2:4. doi:10.1038/srep00653

    Article  CAS  Google Scholar 

  • Rocky Mountain Region Forest Health Protection (2010) A field guide to insects and diseases of the Rocky Mountain region. U. S. Department of Agriculture Forest Service. Rocky Mountain Research Station, Fort Collins

    Google Scholar 

  • Rogerson PA (2001) A statistical method for the detection of geographic clustering. Geogr Anal 33(3):215–227

    Article  Google Scholar 

  • Rogerson PA (2010) Optimal geographic scales for local spatial statistics. Stat Methods Med Res 20(2):119–129. doi:10.1177/0962280210369039

    Article  PubMed  Google Scholar 

  • Ruegg J, Gries C, Bond-Lamberty B, Bowen GJ, Felzer BS, McIntyre NE, Soranno PA, Vanderbilt KL, Weathers KC (2014) Completing the data life cycle: using information management in macrosystems ecology research. Front Ecol Environ 12(1):24–30. doi:10.1890/120375

    Article  Google Scholar 

  • Schulz BK, Gray AN (2013) The new flora of northeastern USA: quantifying introduced plant species occupancy in forest ecosystems. Environ Monit Assess 185(5):3931–3957. doi:10.1007/s10661-012-2841-4

    Article  PubMed  Google Scholar 

  • Shima T, Sugimoto S, Okutomi M (2010) Comparison of image alignment on hexagonal and square lattices. In: 2010 IEEE international conference on image processing, pp 141–144. doi:10.1109/icip.2010.5654351

  • Shore TL, Safranyik L (1992) Susceptibility and risk rating systems for the mountain pine beetle in lodgepole pine stands. Forestry Canada, Pacific Forestry Centre, Victoria

    Google Scholar 

  • Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242

    Article  PubMed  CAS  Google Scholar 

  • Smith WB, Miles PD, Perry CH, Pugh SA (2009) Forest resources of the United States, 2007. U.S. Department of Agriculture Forest Service, Washington Office, Washington, DC

    Google Scholar 

  • Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in a biological model. Geogr Anal 30(4):331–354

    Article  Google Scholar 

  • Timilsina N, Escobedo FJ, Cropper WP, Abd-Elrahman A, Brandeis TJ, Delphin S, Lambert S (2013) A framework for identifying carbon hotspots and forest management drivers. J Environ Manag 114:293–302. doi:10.1016/j.jenvman.2012.10.020

    Article  Google Scholar 

  • Tonini M, Tuia D, Ratle F (2009) Detection of clusters using space-time scan statistics. Int J Wildland Fire 18(7):830–836. doi:10.1071/wf07167

    Article  Google Scholar 

  • United States Department of Agriculture Forest Service (2008) National forest type data development. United States Department of Agriculture, Forest Service, Forest Inventory and Analysis, Remote Sensing Applications Center. http://svinetfc4.fs.fed.us/rastergateway/forest_type/. Accessed 13 May 2008

  • United States Department of Agriculture Forest Service (2011) National report on sustainable forests—2010. U.S. Department of Agriculture Forest Service, Washington, DC

    Google Scholar 

  • United States Department of Agriculture Forest Service (2015a) Insect and disease detection survey database (IDS). Digital data. U.S. Department of Agriculture Forest Service, Forest Health Protection, Forest Health Technology Enterprise Team. http://foresthealth.fs.usda.gov/ids. Accessed 13 April 2015

  • United States Department of Agriculture Forest Service (2015b) MODIS active fire mapping program: continental United States fire detection GIS data. U.S. Department of Agriculture, Forest Service, Remote Sensing Application Center. http://activefiremaps.fs.fed.us/gisdata.php. Accessed 13 Feb 2015

  • Vadrevu KP, Badarinath KVS, Eaturu A (2008) Spatio-temporal analysis of fire events in India: implications for environmental conservation. J Environ Plan Manag 51(6):817–832. doi:10.1080/09640560802423657

    Article  Google Scholar 

  • Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, Hoboken

    Book  Google Scholar 

  • White D, Kimerling AJ, Overton WS (1992) Cartographic and geometric components of a global sampling design for environmental monitoring. Cartogr Geogr Inf Syst 19(1):5–22

    Article  Google Scholar 

  • Wong D (2009) The modifiable areal unit problem (MAUP). In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE Publications Ltd., London, pp 105–125

    Google Scholar 

  • Woudenberg SW, Conkling BL, O’Connell BM, LaPoint EB, Turner JA, Waddell KL (2010) The forest inventory and analysis database: database description and users manual version 4.0 for phase 2. USDA Forest Service, Rocky Mountain Research Station, Fort Collins

    Google Scholar 

Download references

Acknowledgments

The authors thank Stan Zarnoch, Kurt Riitters, John Coulston, and Joe Spruce for their advice and assistance; Jeanine Paschke for her help with the aerial survey data; and two anonymous reviewers for their helpful comments. The authors also thank the Forest Inventory and Analysis field crew members and the forest health aerial survey detection teams for their efforts to collect the data used in this study. This research was supported in part through Cost Share Agreement 14-CS-11330110-042 between the USDA Forest Service and North Carolina State University, and through a National Science Foundation MacroSystems Biology Grant (#1241932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Potter.

Additional information

Special issue: Macrosystems ecology: Novel methods and new understanding of multi-scale patterns and processes.

Guest Editors: S. Fei, Q. Guo, and K. Potter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, K.M., Koch, F.H., Oswalt, C.M. et al. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent. Landscape Ecol 31, 67–84 (2016). https://doi.org/10.1007/s10980-015-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0295-0

Keywords

Navigation