Landscape Ecology

, Volume 31, Issue 4, pp 843–854 | Cite as

Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest

  • Hilda A. Sánchez-de-Jesús
  • Víctor Arroyo-Rodríguez
  • Ellen Andresen
  • Federico Escobar
Research Article

Abstract

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.

Keywords

Biodiversity conservation Forest fragmentation Human-dominated landscapes Lacandona rainforest Land-use change Scarabaeinae 

Supplementary material

10980_2015_293_MOESM1_ESM.docx (97 kb)
Supplementary material 1 (docx 96 kb)

References

  1. Andresen E (2003) Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26:87–97CrossRefGoogle Scholar
  2. Andresen E, Feer F (2005) The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In: Forget PM, Lambert J, Hulme P, Vander Wall SB (eds) Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Oxon, pp 331–349CrossRefGoogle Scholar
  3. Arellano L, León-Cortés J, Halffter G (2008a) Response dung beetle assemblages to landscape structure in remnant natural and modified habitats in southern Mexico. Insect Conserv Divers 1:253–262CrossRefGoogle Scholar
  4. Arellano L, León-Cortés JL, Ovaskainen O (2008b) Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landscape Ecol 23:69–78CrossRefGoogle Scholar
  5. Arroyo-Rodríguez V, González-Perez IM, Garmendia A, Solà M, Estrada A (2013) The relative impact of forest patch and landscape attributes on black howler monkey populations in the fragmented Lacandona rainforest, Mexico. Landscape Ecol 28:1717–1727CrossRefGoogle Scholar
  6. Barnes AD, Emberson RM, Chapman HM, Krell F-T, Didham RK (2014) Matrix habitat restoration alters dung beetle species responses across tropical forest edges. Biol Conserv 170:28–37CrossRefGoogle Scholar
  7. Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6:e17976CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braga RF, Korasaki V, Andresen E, Louzada J (2013) Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8:e57786CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, Anderson J, Ambu L (2015) Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv Biol 29:122–132CrossRefPubMedGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multi-model inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  11. Calcagno V, Mazancourt C (2010) glmulti: an R package for easy automated model selection with (Generalized) Linear Models. J Stat Softw 34:1–29CrossRefGoogle Scholar
  12. Câmara G, Souza RCM, Freitas UM, Garrido J, Mitsuo F II (1996) SPRING: integrating remote sensing and GIS by object-oriented data modeling. Comput Graph 20:395–403CrossRefGoogle Scholar
  13. Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126CrossRefGoogle Scholar
  14. Ceballos G, Rodríguez P, Medellín R (1998) Assessing conservation priorities in megadiverse Mexico: mammalian diversity, endemicity and endangerment. Ecol Appl 8:8–17CrossRefGoogle Scholar
  15. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547CrossRefPubMedGoogle Scholar
  16. Culot L, Bovy E, Vaz-de-Mello FZ, Guevara R, Galetti M (2013) Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biol Conserv 163:79–89CrossRefGoogle Scholar
  17. Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Indic 8:691–703CrossRefGoogle Scholar
  18. Díaz A, Galante E, Favila ME (2010) The effect of the landscape matrix on the distribution of dung and carrion beetles in a fragmented tropical rain forest. J Insect Sci 10:81. Available online: insectscience.org/10.81Google Scholar
  19. Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forest: a functional approach. Trends Ecol Evol 11:255–260CrossRefPubMedGoogle Scholar
  20. Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170CrossRefGoogle Scholar
  21. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175CrossRefGoogle Scholar
  22. Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305CrossRefGoogle Scholar
  23. Escobar F, Halffter G, Solis A, Halffter V, Navarrete D (2008) Temporal shifts in dung beetle community structure within a protected area of tropical wet forest: a 35-year study and its implications for long term conservation. J Appl Ecol 45:1534–1592CrossRefGoogle Scholar
  24. Estrada A, Coates-Estrada R, Anzures A, Cammarano P (1998) Dung and carrion beetles in tropical rain forest fragments and agricultural habitats at Los Tuxtlas, Mexico. J Trop Ecol 14:577–593CrossRefGoogle Scholar
  25. Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecol 26:865–876CrossRefGoogle Scholar
  26. Ewers RM, Didham RK (2002) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol 21:926–936CrossRefGoogle Scholar
  27. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142CrossRefPubMedGoogle Scholar
  28. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  29. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  30. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112CrossRefPubMedGoogle Scholar
  31. Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci USA 106:349–350CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gardner TA, Hernandez MIM, Barlow J, Peres CA (2008) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for Neotropical dung beetles. J Appl Ecol 45:883–893CrossRefGoogle Scholar
  33. Garmendia A, Arroyo-Rodríguez V, Estrada A, Naranjo E, Stoner KE (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344CrossRefGoogle Scholar
  34. GRASS Development Team (2011) Geographic resources analysis support system (GRASS) Software. Open Source Geospatial Foundation ProjectGoogle Scholar
  35. Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol Mex 12:1–312Google Scholar
  36. Halffter G, Halffter V (1989) Behavioral evolution of the non-rolling roller beetles (Coleoptera: Scarabaeidae). Acta Zool Mex 32:1–53Google Scholar
  37. Halffter G, Pineda E, Arellano L, Escobar F (2007) Instability of copronecrophagous beetle assemblages (Coleoptera: Scarabaeinae) in a mountainous tropical landscape of Mexico. Environ Entomol 6:1367–1407Google Scholar
  38. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  39. Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–994CrossRefGoogle Scholar
  40. Hernández-Ruedas MA, Arroyo-Rodríguez V, Meave JA, Martínez-Ramos M, Ibarra-Manríquez G, Martínez E, Melo FPL, Santos BA (2014) Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes. PLoS ONE 9:e98932CrossRefGoogle Scholar
  41. Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landscape Ecol 15:115–130CrossRefGoogle Scholar
  42. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  43. Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232CrossRefGoogle Scholar
  44. Klein BC (1989) Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70:1715–1725CrossRefGoogle Scholar
  45. Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions and forest fragmentation. Conserv Biol 22:1288–1298CrossRefPubMedGoogle Scholar
  46. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampiao E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  47. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323CrossRefGoogle Scholar
  48. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  49. Marcon E, Hérault B (2014) entropart: an R package to measure and partition diversity. Institute for Statistics and Mathematics, Wirtschaftsuniversität WienGoogle Scholar
  50. Marsh CJ, Louzada J, Beiroz W, Ewers RM (2013) Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera:Scarabaeinae). PLoS ONE 8(8):e73147CrossRefPubMedPubMedCentralGoogle Scholar
  51. McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345CrossRefGoogle Scholar
  52. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  53. Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468CrossRefGoogle Scholar
  54. Mora F (2008) Caracterización de la cobertura forestal en el Corredor Biológico Mesoamericano-México: patrones espaciales en la pérdida y fragmentación de bosques. In: CONABIO (ed) Importancia del capital ecológico de la región del Corredor Biológico Mesoamericano-México: evaluación de la biodiversidad, ciclo hidrológico y dinámica de la cobertura forestal. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; Corredor Biológico Mesoamericano México, Mexico City, pp 55–83Google Scholar
  55. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefPubMedGoogle Scholar
  56. Murphy DD (1989) Conservation and confusion–wrong species, wrong scale, wrong conclusions. Conserv Biol 3:82–84CrossRefGoogle Scholar
  57. Navarrete D, Halffter G (2008) Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: the effects of anthropogenic changes. Biodivers Conserv 17:2869–2898CrossRefGoogle Scholar
  58. Neter J, Kutner MH, Nachtsheim CJ, Wassermen W (1996) Applied linear statistical models, 4th edn. Irwin, ChicagoGoogle Scholar
  59. Newbold T, Hudson LN, Phillips HRP, Hill SLL, Contu S, Lysenko I, Blandon A, Butchart SHM, Booth HL, Day J, De Palma A, Harrison MLK, Kirkpatrick L, Pynegar E, Robinson A, Simpson J, Mace GM, Scharlemann JPW, Purvis A (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc R Soc B 281:20141371CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vulinec K (2007) Global dung beetle response to tropical forest modification and fragmentation: a review and meta-analysis. Biol Conserv 137:1–19CrossRefGoogle Scholar
  61. Nichols E, Larsen T, Spector S, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474CrossRefGoogle Scholar
  62. Nichols ES, Gardner TA (2011) Dung beetles as a candidate study taxon in applied biodiversity conservation research. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung beetles. Wiley, Chichester, pp 267–291CrossRefGoogle Scholar
  63. Ordóñez-Gómez JD, Arroyo-Rodríguez V, Nicasio-Arzeta S, Cristóbal-Azkarate J (2015) Which is the appropriate scale to assess the impact of landscape spatial configuration on the diet and behavior of spider monkeys? Am J Primatol 77:56–65CrossRefPubMedGoogle Scholar
  64. Patton DR (1975) A diversity index for quantifying habitat “edge”. Wild Soc B 3:171–173Google Scholar
  65. Perfecto I, Vandermeer J, Wright A (2009) Nature’s matrix: Linking agriculture, conservation and food sovereignty. EarthscanGoogle Scholar
  66. Perović D, Gámez-Virués S, Börschig C, Klein AM, Krauss J, Steckel J, Rothenwöhrer C, Erasmi S, Tscharntke T, Westphal C (2015) Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J Appl Ecol 52:505–513CrossRefGoogle Scholar
  67. Quintero I, Roslin T (2005) Rapid recovery of dung beetle communities following habitat fragmentation in Central Amazonia. Ecology 86:3303–3311CrossRefGoogle Scholar
  68. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  69. Rös M, Escobar F, Halffter G (2012) How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: a study of biodiversity integrating ecological and biogeographical perspectives. Divers Distrib 18:377–389CrossRefGoogle Scholar
  70. San-José M, Arroyo-Rodríguez V, Sánchez-Cordero V (2014) Association between small rodents and forest patch and landscape structure in the fragmented Lacandona rainforest, Mexico. Trop Conserv Sci 7:403–422Google Scholar
  71. Santos-Heredia C, Andresen E (2014) Upward movement of buried seeds: another ecological role of dung beetles promoting seedling establishment. J Trop Ecol 30:409–417CrossRefGoogle Scholar
  72. Schoereder JH, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSouza O, Lopes-Andrade C (2004) Should we use proportional sampling for species-area studies? J Biogeogr 31:1219–1226CrossRefGoogle Scholar
  73. Silva PG, Hernández MIM (2014) Local and regional effects on community structure of dung beetles in a mainland-island scenario. PLoS ONE 9:e111883CrossRefPubMedPubMedCentralGoogle Scholar
  74. Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113CrossRefGoogle Scholar
  75. Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian Neotropical forest–savanna ecotone. Biotropica 35:394–404Google Scholar
  76. Thornton DH, Branch LC, Sunquist ME (2011) The relative influence of habitat loss and fragmentation: do tropical mammals meet the temperate paradigm? Ecol Appl 21:2324–2333CrossRefPubMedGoogle Scholar
  77. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  78. Tscharntke T, Tylianakis M, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  79. Zárate DA, Andresen E, Estrada A, Serio-Silva JC (2014) Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico. Am J Primatol 76:890–899CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hilda A. Sánchez-de-Jesús
    • 1
  • Víctor Arroyo-Rodríguez
    • 1
  • Ellen Andresen
    • 1
  • Federico Escobar
    • 2
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Red de EcoetologíaInstituto de Ecología, A. C.XalapaMexico

Personalised recommendations