Skip to main content

Advertisement

Log in

Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Vegetation is projected to continue to undergo major structural changes in coming decades due to land conversion and climate change, including widespread forest die-offs. These vegetation changes are important not only for their local or regional climatic effects, but also because they can affect climate and subsequently vegetation in other regions or continents through “ecoclimate teleconnections”.

Objectives

We propose that ecoclimate teleconnections are a fundamental link among regions within and across continents, and are central to advancing large-scale macrosystems ecology.

Methods and results

We illustrate potential ecoclimate teleconnections in a bounding simulation that assumes complete tree cover loss in western North America due to tree die-off, and which predicts subsequent drying and reduced net primary productivity in other areas of North America, the Amazon and elsewhere. Central to accurately modeling such ecoclimate teleconnections is characterizing how vegetation change alters albedo and other components of the land-surface energy balance and then scales up to impact the climate system. We introduce a framework for rapid field-based characterization of vegetation structure and energy balance to help address this challenge.

Conclusions

Ecoclimate teleconnections are likely a fundamental aspect of macrosystems ecology needed to account for alterations to large-scale atmospheric-ecological couplings in response to vegetation change, including deforestation, afforestation and die-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global- change-type drought. Proc Natl Acad Sci 106(17):7063–7066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95(25):14839–14842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability of tree mortality and forest die-off to hotter drought in the Anthropocene. Ecosphere 6(8):129

    Article  Google Scholar 

  • American Institute of Biological Sciences (2004) Ecological impacts of climate change: Report from a NEON Science Workshop. AIBS, Washington

    Google Scholar 

  • Anderegg ARL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3(20–36):715

    Google Scholar 

  • Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701

    Article  Google Scholar 

  • Avissar R, Werth D (2005) Global hydroclimatological teleconnections resulting from tropical deforestation. J Hydrometeorol 6(2):134–145

    Article  Google Scholar 

  • Avissar R, Silva Dias PL, Silva Dias MAF, Nobre C (2002) The large-scale biosphere–atmosphere experiment in Amazonia (LBA): insights and future research needs. J Geophys Res: Atmospheres (1984–2012) 107(D20):LBA-54

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feed-backs, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 363(1498):1839–1848

    Article  Google Scholar 

  • Breshears DD (2006) The grassland-forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ 4(2):96–104

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102(42):15144–15148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Breshears DD, Whicker JJ, Zou CB, Field JP, Allen CD (2009) A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: effects of woody plant canopy cover and disturbance. Geomorphology 105(1):28–38

    Article  Google Scholar 

  • Breshears DD, Adams HD, Eamus D, McDowell NG, Law DJ, Will RE, Williams AP, Zou CB (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 4(266):1–4

    Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard CGA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519(7543):344–348

    Article  PubMed  CAS  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755

    PubMed  CAS  Google Scholar 

  • Costa MH, Pires GF (2010) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30:1970–1979

    Article  Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78(1–3):137–156

    Google Scholar 

  • da Costa A, Galbraith D, Almeida S, Tanaka Portela BT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P (2010) Effect of 7 years of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187(3):579–591

    Article  PubMed  Google Scholar 

  • da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, Restrepo-Coupe N, Wofsy SC, Borma LS, Artaxo P, Vourlitis G, Nogueira JS, Cardoso FL, Nobre AD, Kruijt B, Freitas HC, von Randow C, Aguiar RG, Maia JF (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil. J Geophy Res (2005–2012) 114(G1)

  • Devaraju N, Bala G, Modak A (2015) Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc Natl Acad Sci 112(11):3257–3262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dominguez F, Villegas JC, Breshears DD (2009) Spatial extent of the North American Monsoon: increased cross-regional linkages via atmospheric pathways. Geophys Res Lett 36(7)

  • Feddema J, Oleson K, Bonan G, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA, Williams M, Costa D, Lola A, Malhi Y, da Costa RF, Almeida S, Meir P (2007) The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13(11):2361–2378

    Article  Google Scholar 

  • Fisher JB, Malhi Y, Bonal D, da Rocha HR, de Araújo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H, Kumagai T, Loescher HW, Miller S, Nobre AD, Nouvellon Y, Oberbauer SF, Panuthai S, Roupsard O, Saleska S, Tanaka K, Tanaka N, Tu KP, von Randow C (2009) The land-atmosphere water flux in the tropics. Glob Change Biol 15(11):2694–2714

    Article  Google Scholar 

  • Fisher RA, Muszla S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, Lawrence D, Bonan G (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes. Geosci Model Dev Discuss 8:3293–3357

    Article  Google Scholar 

  • Garcia ES, Swann ALS, Breshears DD, Villegas JC, Stark SC, Saleska SR, Minor DM, Law D (in prep) Global consequences of forest die-off in North and South America

  • Goulden ML, Winston GC, McMillan AMS, Litvak ME, Read EL, Rocha AV, Elliot JR (2006) An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange. Glob Change Biol 12:2146–2162

    Article  Google Scholar 

  • Hasler N, Avissar R (2007) What controls evapotranspiration in the Amazon basin? J Hydrometeorol 8(3):380–395

    Article  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Keller M, Schimel DS, Hargrove WW, Hoffman FM (2008) A continental strategy for the National Ecological Observatory Network. Front Ecol Environ 6:282–284

    Article  Google Scholar 

  • Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nat Clim Change 5:27–36

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52(1):19–30

    Article  Google Scholar 

  • Litvak ME, Morillas-Gonzales L, Krofcheck D, Fox AM, Maurer G (in prep) Carbon and energy balance consequences of widespread mortality in piñon-juniper woodlands

  • Luo Y, Randerson JT, Abramowitz G, Luo YQ, Randerson JT, Abramowitz G, Bacour C, Blyth E, Carvalhais N, Ciais P, Dalmonech D, Fisher JB, Fisher R, Friedlingstein P, Hibbard K, Hoffman F, Huntzinger D, Jones CD, Koven C, Lawrence D, Li DJ, Mahecha M, Niu SL, Norby R, Piao SL, Qil X, Peylin P, Prentice IC, Riley W, Reichstein M, Schwalm C, Wang YP, Xia JY, Zaehle S, Zhou XH (2012) A framework for benchmarking land models. Biogeosciences 9:3857–3874

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 111:79–96

    Article  Google Scholar 

  • Maness H, Kushner P, Fung I (2012) Summertime climate response to mountain pine beetle disturbance in British Columbia. Nat Geosci 6(1):65–70

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    Article  PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26(10):523–532

    Article  PubMed  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J Geophys Res (2005–2012) 114(G1)

  • Medvigy D, Walko RL, Otte M, Avissar R (2013) Simulated changes in Northwest US climate in response to Amazon deforestation. J Clim 26:9115–9136

    Article  Google Scholar 

  • Miller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Silva Figueira AM, da Rocha HR, de Camargo PB (2011) Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc Natl Acad Sci 108(48):19431–19435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269

    Article  PubMed  Google Scholar 

  • Parker GG, Harding DJ, Berger ML (2004a) A portable LIDAR system for rapid determination of forest canopy structure. J Appl Ecol 41(4):755–767

    Article  Google Scholar 

  • Parker GG, Harmon ME, Lefsky MA, Chen J, Van Pelt R, Weis SB, Thomas SC, Winner WE, Shaw DC, Frankling JF (2004b) Three-dimensional structure of an old-growth Pseudotsuga–Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems 7(5):440–453

    Article  Google Scholar 

  • Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL (2007) The RAINFOR database: monitoring forest biomass and dynamics. J Veg Sci 18(4):535–542

    Article  Google Scholar 

  • Peters DPC, Groffman PM, Nadelhoffer KJ, Grimm NB, Collins SL, Michener WK, Huston MA (2008) Living in an increasingly connected world: a framework for continental-scale environmental science. Front Ecol Environ 6:229–237

    Article  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, Alves de Oliveira AC, Dávila Cardozo N, Czimczik CI, Feldpausch TR, Aparecida Freitas M, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela CM, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vásquez R, Zelazowski P, Alvarez Dávila E, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio CE, Keeling H, Killeen TJ, Laurance WF, Peña Cruz A, Pitman NCA, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Phillips OL, Van der Heijden G, Lewis SL, López-González G, Aragão LEOC, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Alvarez Dávila E, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, Alves de Oliveira AC, Chao KJ, Dávila Cardozo N, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jiménez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, Morel A, Nuñez Vargas P, Patiño S, Peh KSH, Peña Cruz A, Prieto A, Quesada CA, Ramírez F, Ramírez H, Rudas A, Salamão R, Schwarz M, Silva J, Silveira M, Ferry Slik JW, Sonké B, Sota Thomas A, Stropp J, Taplin JRD, Vásquez R, Vilanova E (2010) Drought–mortality relationships for tropical forests. New Phytol 187(3):631–646

    Article  PubMed  Google Scholar 

  • Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) Guide to hemi-view: software for analysis of hemispherical photography, manual. Delta-T Devices, Cambridge

    Google Scholar 

  • Royer PD, Breshears DD, Zou CB, Cobb NS, Kurc SA (2010) Ecohydrological energy inputs in semiarid coniferous gradients: responses to management-and drought-induced tree reductions. For Ecol Manag 260(10):1646–1655

    Article  Google Scholar 

  • Royer PD, Cobb NS, Clifford MJ, Huang CY, Breshears DD, Adams HD, Villegas JC (2011) Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J Ecol 99(3):714–723

    Article  Google Scholar 

  • Saatchi S, Asefi-Najafabady S, Malhi Y, Saatchi S, Asefi-Najafabadyb S, Malhi Y, Aragão LEOC, Anderson LO, Myneni RB, Nemani R (2013) Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci 110(2):565–570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shuttleworth WJ (2012) Terrestrial hydrometeorology. Wiley, Chichester

    Book  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(282–285):892

    Google Scholar 

  • Stark SC, Leitold V, Wu JL, Enquist BJ, Saleska SR, Leitold V, Schietti J, Longo M, Alves LF, Camargo PB, Oliveira RC (2012) Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol Lett 15(12):1406–1414

    Article  PubMed  Google Scholar 

  • Stark SC, Enquist BJ, Saleska SR, Leitold V, Wu J, Hunter MO, Lefsky MA, McMahon SM, Parker GG, Shimabukuro MT, Castilho CV, Schietti J, Shimabukuro YE, Costa FRC, Brandão DO, Woodcock TK, Higuchi N, Camargo PB, Oliveira RC, Saleska SR (2015) Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. Ecol Lett 18(7):636–645

    Article  PubMed  Google Scholar 

  • Swann ALS, Fung IY, Chiang JCH (2012) Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc Natl Acad Sci 109(3):712–716

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science 323(5913):521–524

    Article  PubMed  Google Scholar 

  • Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J 9(3):537–547

    Article  Google Scholar 

  • Villegas JC, Espeleta JE, Morrison CT, Breshears DD, Huxman TE (2014) Factoring in canopy cover heterogeneity on evapotranspiration partitioning: beyond big-leaf surface homogeneity assumptions. J Soil Water Conserv 69(3):78A–83A

    Article  Google Scholar 

  • Villegas JC, Dominguez F, Barron-Gafford GA, Adams HD, Guardiola-Claramonte M, Sommer ED, Selvey AW, Villegas JC, Dominguez F, Barron-Gafford GA, Adams HD, Guardiola-Claramonte M, Sommer ED, Selvey AW, Espeleta JF, Zou CB, Breshears DD, Huxman TE (2015) Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics. Glob Ecol Biogeogr 24(9):1040–1048

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henryd GHR, Ahlquist LE, Alatalo JM, Bret-Harteh MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttirk IS, Klein JA, Magnússon B, Molau U, Oberbauerf SF, Rewan SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totlandt Ø, Lee Turner P, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103(5):1342–1346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci 107(50):21289–21294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3(3):292–297

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported primarily through NSF EF-1340624, EF-1340649 & EF-1340604; additional support provided by Arizona Agricultural Experiment Station; Estrategia de Sostenibilidad 2014–2015 Universidad de Antioquia; PPBio-CENBAM; L.E.O.C.A. acknowledges the support of the CNPq Fellowship and FAPESP (Grant 2013/50533-5). L.S.B acknowledges the support of the FAPESP (Grant 2013/50531-2). We would also like to acknowledge the contributions of anonymous reviewers to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Stark.

Additional information

Guest Editors: S. Fei, Q. Guo, and K. Potter.

Special issue: Macrosystems ecology: Novel methods and new understanding of multi-scale patterns and processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, S.C., Breshears, D.D., Garcia, E.S. et al. Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecol 31, 181–194 (2016). https://doi.org/10.1007/s10980-015-0282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0282-5

Keywords

Navigation