Landscape Ecology

, Volume 31, Issue 1, pp 85–99 | Cite as

Evidence of biotic resistance to invasions in forests of the Eastern USA

  • Basil V. IannoneIIIEmail author
  • Kevin M. Potter
  • Kelly-Ann Dixon Hamil
  • Whitney Huang
  • Hao Zhang
  • Qinfeng Guo
  • Christopher M. Oswalt
  • Christopher W. Woodall
  • Songlin Fei
Research Article



Detecting biotic resistance to biological invasions across large geographic areas may require acknowledging multiple metrics of niche usage and potential spatial heterogeneity in associations between invasive and native species diversity and dominance.


Determine (1) if native communities are resistant to biological invasions at macroscales; (2) the metrics that best quantify biotic resistance at these scales; and (3) the degree to which the direction and magnitude of invader-native associations vary with scale and/or location.


Using a mixed-effects modeling framework to account for potential sub-regional and cross-scale variability in invader-native associations, we modeled the species richness and cover of invasive plants in 42,626 plots located throughout Eastern USA forests in relationship to plot-level estimates of native tree biomass, species richness, and evolutionary diversity.


We found (1) native tree biomass and evolutionary diversity, but not species richness, to be negatively associated with invader establishment and dominance, and thus indicative of biotic resistance; (2) evidence that evolutionary diversity limits invader dominance more than it does invader establishment; (3) evidence of greater invasion resistance in parts of the agriculturally-dominated Midwest and in and around the more-contiguous forests of the Appalachian Mountains; and (4) the magnitude to which native tree biomass and evolutionary diversity limit invasion varies across the ranges of these metrics.


These findings illustrate the improved understanding of biotic resistance to invasions that is gained by accounting for sub-regional variability in ecological processes, and underscores the need to determine the factors leading to spatial heterogeneity in biotic resistance.


Big data Biomass FIA Program Invasive plants Macrosystems Niche Evolutionary diversity Taxonomic diversity 



We would like to thank the many FIA workers who collected the data used in this investigation; Beth Schulz, Andrew Gray, and Chris Witt for helping to compile the data; Johanna Desprez and Jarrod Doucette for GIS-related advice; and two anonymous reviewers for their constructive criticisms and suggestions on how to improve this paper. This research was supported by NSF Macrosystems Biology Grant # 1241932 and by a Research Joint Venture Agreement 13-JV-11330110-043 and Cost Share Agreement 14-CS-11330110-042 between the USDA Forest Service and North Carolina State University.

Supplementary material

10980_2015_280_MOESM1_ESM.docx (622 kb)
Supplementary material 1 Appendix A1 (DOCX 622 kb)
10980_2015_280_MOESM2_ESM.docx (19 kb)
Supplementary material 2 Table A2 (DOCX 20 kb)
10980_2015_280_MOESM3_ESM.docx (16 kb)
Supplementary material 3 Table A3 (DOCX 16 kb)
10980_2015_280_MOESM4_ESM.docx (30 kb)
Supplementary material 4 Appendix A4 (DOCX 30 kb)


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceedings, 2nd International Symposium of Information Theory. Akademiai Kiado, Budapest, pp. 267–281Google Scholar
  2. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64(4):912–923CrossRefGoogle Scholar
  3. Araújo MB, Rozenfeld A (2014) The geographic scaling of biotic interactions. Ecography 37(5):406–415Google Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7.
  5. Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program—national sampling design and estimation procedures. General Technical Report SRS-80. U.S. Department of Agriculture, Forest Service, Southern Research Station, AshevilleGoogle Scholar
  6. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15(1):22–40CrossRefGoogle Scholar
  7. Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Chang Biol 18(1):44–62PubMedCentralCrossRefGoogle Scholar
  8. Clark GF, Johnston EL (2011) Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecol Lett 14(1):52–57PubMedCrossRefGoogle Scholar
  9. Cleland DT, Avers PE, McNab WH, Jensen ME, Bailey RG, King T, Russell WE (1997) National hierarchical framework of ecological units. In: Boyce MS, Haney A (eds) Ecosystem management applications for sustainable forest and wildlife resources. Yale University Press, New Haven, pp 181–200Google Scholar
  10. Cleland DT, Freeouf JA, Keys JE, Nowacki GJ, Carpenter CA, McNab WH (2007) Ecological subregions: sections and subsections for the conterminous United States. General Technical. Report WO-76. U.S. Department of Agriculture, Forest Service, Washington, D.C. Map, presentation scale 1:3,500,000; Albers equal area projection; coloredGoogle Scholar
  11. Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291(5505):864–868PubMedCrossRefGoogle Scholar
  12. Dark SJ, Bram D (2007) The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geogr 31(5):471–479CrossRefGoogle Scholar
  13. Davies RB (1987) Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74(1):33–43Google Scholar
  14. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534CrossRefGoogle Scholar
  15. Dixon Hamil K, Huang W, Iannone BV, III, Fei S, Zhang H (2015) Analysis of multiscale ecological data. Landsc Ecol. doi: 10.1007/s10980-015-0288-z Google Scholar
  16. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75CrossRefGoogle Scholar
  17. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  18. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10CrossRefGoogle Scholar
  19. Faith DP (2002) Quantifying biodiversity: a phylogenetic perspective. Conserv Biol 16(1):248–252CrossRefGoogle Scholar
  20. Fei S, Phillips J, Shouse M (2014) Biogeomorphic impacts of invasive species. Annu Rev Ecol Evol Syst 45(1):69–87CrossRefGoogle Scholar
  21. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Holle BV (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88(1):3–17PubMedCrossRefGoogle Scholar
  22. Gavier-Pizarro GI, Radeloff VC, Stewart SI, Huebner CD, Keuler NS (2010) Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecol Appl 20(7):1913–1925PubMedCrossRefGoogle Scholar
  23. Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57(10):845–858CrossRefGoogle Scholar
  24. Guo Q, Symstad A (2008) A two-part measure of degree of invasion for cross-community comparisons. Conserv Biol 22(3):666–672PubMedCrossRefGoogle Scholar
  25. Guo Q, Rejmanek M, Wen J (2012) Geographical, socioeconomic, and ecological determinants of exotic plant naturalization in the United States: insights and updates from improved data. NeoBiota 12:41–55CrossRefGoogle Scholar
  26. Guo Q, Fei S, Dukes JS, Oswalt C, Iannone BV III, Potter KM (2015) A unified approach to quantify invasibility and degree of invasion. Ecology 96:2613–2621PubMedCrossRefGoogle Scholar
  27. Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12(1):5–14CrossRefGoogle Scholar
  28. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83PubMedCrossRefGoogle Scholar
  29. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18CrossRefGoogle Scholar
  30. Iannone BV III, Oswalt CM, Liebhold AM, Guo Q, Potter KM, Nunez-Mir GC, Oswalt SN, Pijanowski BC, Fei S (2015) Region-specific patterns and drivers of macroscale forest plant invasions. Divers Distrib 21(10): 1181–1192CrossRefGoogle Scholar
  31. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317(5834):58–62PubMedCrossRefGoogle Scholar
  32. Jenkins PT (1996) Free trade and exotic species introductions. Conserv Biol 10(1):300–302CrossRefGoogle Scholar
  33. Jeschke JM, Gómez Aparicio L, Haider S, Heger T, Lortie CJ, Pyšek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20CrossRefGoogle Scholar
  34. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305PubMedCrossRefGoogle Scholar
  35. Legendre P, Legendre L (2012) Numerical ecology. Elsevier Science B.V, AmsterdamGoogle Scholar
  36. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87(1):15–26CrossRefGoogle Scholar
  37. Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19(9):1208–1216CrossRefGoogle Scholar
  38. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228PubMedCrossRefGoogle Scholar
  39. Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendtions for U.S. policy and management. Ecol Appl 16(6):2035–2054PubMedCrossRefGoogle Scholar
  40. Lososová Z, de Bello F, Chytrý M, Kühn I, Pyšek P, Sádlo J, Winter M, Zelený D (2015) Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob Ecol Biogeogr 24(7):786–794CrossRefGoogle Scholar
  41. Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7(3):142–149CrossRefGoogle Scholar
  42. Masek JG, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008) North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ 112(6):2914–2926CrossRefGoogle Scholar
  43. McCann KS (2000) The diversity-stability debate. Nature 405(6783):228–233PubMedCrossRefGoogle Scholar
  44. McNab WH, Cleland DT, Freeouf JA, Keys JE, Jr, Nowacki GJ, Carpenter CA (2007) Description of ecological subregions: sections of the conterminous United States [CD-ROM]. General Technical Report WO-76B. U.S. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  45. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7(7):584–600CrossRefGoogle Scholar
  46. Muller RN (2003) Nutrient relations of the herbaceous layer in deciduous forest ecosystems. In: Gilliam FS, Roberts MR (eds) The Herbaceous layer in Forests of Eastern North America. Oxford University Press, New York, pp 15–37Google Scholar
  47. Oswalt C, Fei S, Guo Q, Iannone BV III, Oswalt S, Pijanowski B, Potter K (2015) A subcontinental view of forest plant invasions using national inventory data. NeoBiota 24:49–54CrossRefGoogle Scholar
  48. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504PubMedCrossRefGoogle Scholar
  49. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758PubMedCrossRefGoogle Scholar
  50. Peters DC, Bestelmeyer BT, Turner MG (2007) Cross–scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10(5):790–796CrossRefGoogle Scholar
  51. Potter KM, Woodall CW (2012) Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change. Ecol Appl 22(2):517–531PubMedCrossRefGoogle Scholar
  52. Potter KM, Woodall CW (2014) Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across U.S. forests. For Ecol Manag 321:117–129CrossRefGoogle Scholar
  53. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci 107(27):12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ries P, Dix ME, Lelmini M, Thomas D (2004) National strategy and implementation plan for invasive species management. FS-805. U.S. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  55. Riitters KH, Wickham JD, O’Neill RV, Jones KB, Smith ER, Coulston JW, Wade TG, Smith JH (2002) Fragmentation of continental United States forests. Ecosystems 5(8):0815–0822CrossRefGoogle Scholar
  56. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1(2):103–113CrossRefGoogle Scholar
  57. Shurin JB, Srivastava DS (2005) New perspectives on local and regional diversity: beyond saturation. In: Holyoak M, Liebold M, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, pp 399–417Google Scholar
  58. Soranno PA, Schimel DS (2014) Macrosystems ecology: big data, big ecology. Front Ecol Environ 12(1):3–3CrossRefGoogle Scholar
  59. Soranno PA, Cheruvelil KS, Bissell EG, Bremigan MT, Downing JA, Fergus CE, Filstrup CT, Henry EN, Lottig NR, Stanley EH, Stow CA, Tan P-N, Wagner T, Webster KE (2014) Cross-scale interactions: quantifying multi-scaled cause–effect relationships in macrosystems. Front Ecol Environ 12(1):65–73CrossRefGoogle Scholar
  60. Spanos A (2014) Recurring controversies about P values and confidence intervals revisited. Ecology 95(3):645–651PubMedCrossRefGoogle Scholar
  61. Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1(1):11–14CrossRefGoogle Scholar
  62. Tan J, Pu Z, Ryberg WA, Jiang L (2015) Resident-invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am Nat 186(1):59–71PubMedCrossRefGoogle Scholar
  63. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  64. Tibshirani R, Leisch F (2013) Bootstrap: Functions for the Book “An introduction to the bootstrap”. R package version. 2012.04-1.
  65. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  66. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton and OxfordGoogle Scholar
  67. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397CrossRefGoogle Scholar
  68. Woodall CW, Westfall JA (2010) Curious or spurious correlations within a national-scale forest inventory? In: McWilliams W, Roesch FA (eds), Monitoring Across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists. e-General Technical Report SRS-157. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp. 39–43Google Scholar
  69. Woodall CW, Heath LS, Domke G, Nichols M (2011) Methods and equations for estimating volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. US Forest Service General Technical Report NRS-GTR-88. USFS Northern Research Statation, Newtown Square, pp. 30Google Scholar
  70. Woodall CW, Westfall JA, Zhu K, Johnson DJ (2013) Assessing the effect of snow/water obstructions on the measurement of tree seedlings in a large-scale temperate forest inventory. Forestry 86(4):421–427CrossRefGoogle Scholar
  71. Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17(4):355–365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Basil V. IannoneIII
    • 1
    Email author
  • Kevin M. Potter
    • 2
  • Kelly-Ann Dixon Hamil
    • 3
  • Whitney Huang
    • 3
  • Hao Zhang
    • 3
  • Qinfeng Guo
    • 4
  • Christopher M. Oswalt
    • 5
  • Christopher W. Woodall
    • 6
  • Songlin Fei
    • 1
  1. 1.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityResearch Triangle ParkUSA
  3. 3.Department of StatisticsPurdue UniversityWest LafayetteUSA
  4. 4.USDA Forest Service Southern Research StationResearch Triangle ParkUSA
  5. 5.USDA Forest Service Southern Research StationKnoxvilleUSA
  6. 6.USDA Forest Service Northern Research StationSaint PaulUSA

Personalised recommendations