Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau

Abstract

Context

The Mongolian Plateau, comprising Inner Mongolia, China (IM) and Mongolia (MG) is undergoing consistent warming and accelerated land cover/land use change. Extensive modifications of water-limited regions can alter ecosystem function and processes; hence, it is important to differentiate the impacts of human activities and precipitation dynamics on vegetation productivity.

Objectives

This study distinguished between human-induced and precipitation-driven changes in vegetation cover on the plateau across biome, vegetation type and administrative divisions.

Methods

Non-parametric trend tests were applied to the time series of vegetation indices (VI) derived from MODIS and AVHRR and precipitation from TRMM and MERRA reanalysis data. VI residuals adjusted for rainfall were obtained from the regression between growing season maximum VI and monthly accumulated rainfall (June–August) and were used to detect human-induced trends in vegetation productivity during 1981–2010. The total livestock and population density trends were identified and then used to explain the VI residual trends.

Results

The slope of precipitation-adjusted EVI and EVI2 residuals were negatively correlated to total livestock density (R2 = 0.59 and 0.16, p < 0.05) in MG and positively correlated with total population density (R2 = 0.31, p < 0.05) in IM. The slope of precipitation-adjusted EVI and EVI2 residuals were also negatively correlated with goat density (R2 = 0.59 and 0.19, p < 0.05) and sheep density in MG (R2 = 0.59 and 0.13, p < 0.05) but not in IM.

Conclusions

Some administrative subdivisions in IM and MG showed decreasing trends in VI residuals. These trends could be attributed to increasing livestock or population density and changes in livestock herd composition. Other subdivisions showed increasing trends residuals, suggesting that the vegetation cover increase could be attributed to conservation efforts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akram M, Qian Z, Wenjun L (2008) Policy analysis in grassland management of Xilingol Prefecture, Inner Mongolia in. In: Lee C, Schaaf T (eds) The future of drylands. Springer, Dordrecht, pp 493–505

    Google Scholar 

  2. Alcaraz-Segura D, Liras E, Tabik S, Paruelo J, Cabello J (2010) Evaluating the consistency of the 1982–1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors 10(2):1291–1314

    PubMed Central  PubMed  Article  Google Scholar 

  3. Anderson LO, Malhi Y, Aragão LEOC, Ladle R, Arai E, Barbier N, Phillips O (2010) Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187(3):733–750

    PubMed  Article  Google Scholar 

  4. Anyamba A, Small J, Tucker C, Pak E (2014) Thirty-two years of Sahelian zone growing season non-stationary NDVI3g patterns and trends. Remote Sens 6(4):3101–3122

    Article  Google Scholar 

  5. Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701

    Article  Google Scholar 

  6. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89(8):2140–2153

    PubMed  Article  Google Scholar 

  7. Barreto-Munoz A (2013) Multi-sensor vegetation index and land surface phenology earth science data records in support of global change studies: data quality challenges and data explorer system. The University of Arizona, Tucson

    Google Scholar 

  8. Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G, Kappas M (eds) (2013) Dryland East Asia (DEA): land dynamics amid social and climate change. HEP and De Gruyter, Berlin, 470 pp. Retrieved 22 Aug 2015, from http://www.degruyter.com/view/product/183249

  9. Chen J, John R, Shao C, Fan Y, Zhang Y, Amarjargal A, Brown DG, Qi J, Han JG, Lafortezza R, Dong G (2015a) Policy shifts influence the functional changes of the CNH systems on the Mongolian Plateau. Environ Res Lett. doi:10.1007/s11367-015-0915-6

    Google Scholar 

  10. Chen J, John R, Zhang Y, Shao C, Brown DG, Batkhishig O, Amarjargal A, Ouyang Z, Dong G, Wang D, Qi J (2015b) Divergences of two coupled human and natural systems on the Mongolian Plateau. Bioscience 65(6):559–570

    Article  Google Scholar 

  11. Cheng X, An S, Li B, Chen J, Lin G, Liu Y, Luo Y, Liu S (2006) Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol 184(1):1–12

    Article  Google Scholar 

  12. de Beurs K, Wright CK, Henebry GM (2009) Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ Res Lett 4(4):045012

    Article  Google Scholar 

  13. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702

    Article  Google Scholar 

  14. Didan K (2010) Multi-satellite earth science data record for studying global vegetation trends and changes. In: International geoscience and remote sensing symposium, Honolulu, pp 25–30

  15. Dong J, Liu J, Yan H, Tao F, Kuang W (2011) Spatio-temporal pattern and rationality of land reclamation and cropland abandonment in mid-eastern Inner Mongolia of China in 1990–2005. Environ Monit Assess 179(1–4):137–153

    PubMed  Article  Google Scholar 

  16. Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554

    Article  Google Scholar 

  17. Fan M, Li Y, Li W (2015) Solving one problem by creating a bigger one: the consequences of ecological resettlement for grassland restoration and poverty alleviation in Northwestern China. Land Use Policy 42:124–130

    Article  Google Scholar 

  18. Fernández-Giménez ME (2002) Spatial and social boundaries and the paradox of pastoral land tenure: a case study from postsocialist Mongolia. Hum Ecol 30(1):49–78

    Article  Google Scholar 

  19. Fernández-Giménez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36(6):871–885

    Article  Google Scholar 

  20. Fernández-Giménez ME, Batkhishig B, Batbuyan B (2012) Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Glob Environ Change 22(4):836–851

    Article  Google Scholar 

  21. Groisman PY, Clark EA, Lettenmaier DP, Kattsov VM, Sokolik IN, Aizen VB, Cartus O, Chen J, Schmullius CC, Conard S, Katzenberger J, Krankina O, Kukkonen J, Sofiev MA, Machida T, Maksyutov S, Ojima D, Qi J, Romanovsky VE, Walker D, Santoro M, Shiklomanov AI, Vörösmarty C, Shimoyama K, Shugart HH, Shuman JK, Sukhinin AI, Wood EF (2009) The Northern Eurasia Earth Science Partnership: an example of science applied to societal needs. Bull Am Meteorol Soc 90(5):671–688

    Article  Google Scholar 

  22. Hein L, de Ridder N, Hiernaux P, Leemans R, de Wit A, Schaepman M (2011) Desertification in the Sahel: towards better accounting for ecosystem dynamics in the interpretation of remote sensing images. J Arid Environ 75(11):1164–1172

    Article  Google Scholar 

  23. Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Change Biol 20(2):418–428

    Article  Google Scholar 

  24. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213

    Article  Google Scholar 

  25. Huffman GJ, Adler RF, Rudolf B, Schneider U, Keehn PR (1995) Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP Model precipitation information. J Clim 8(5):1284–1295

    Article  Google Scholar 

  26. Jiang G, Han X, Wu J (2006) Restorat ion and management of the Inner Mongolia grassland require a sustainable strategy. Ambio 35(5):269–270

    PubMed  Article  Google Scholar 

  27. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845

    Article  Google Scholar 

  28. John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4(4):045010

    Article  Google Scholar 

  29. John R, Chen J, Noormets A, Xiao X, Xu J, Lu N, Chen S (2013a) Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. Int J Remote Sens 34(8):2829–2857

    Article  Google Scholar 

  30. John R, Chen J, Ou-Yang Z-T, Xiao J, Becker R, Samanta A, Ganguly S, Yuan W, Batkhishig O (2013b) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8(3):035033

    Article  Google Scholar 

  31. Kawada K, Wuyunna, Nakamura T (2011) Land degradation of abandoned croplands in the Xilingol steppe region, Inner Mongolia, China. Grassl Sci 57(1):58–64

    Article  Google Scholar 

  32. Kim Y, Huete AR, Miura T, Jiang Z (2010) Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data. J Appl Remote Sens 4(1):043520-20–043520-22

    Article  Google Scholar 

  33. Kim Y, Kimball JS, Zhang K, McDonald KC (2012) Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 121:472–487

    Article  Google Scholar 

  34. Kim Y, Kimball JS, Zhang K, Didan K, Velicogna I, McDonald KC (2014) Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. Int J Remote Sens 35(10):3700–3721

    Article  Google Scholar 

  35. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  36. Li A, Wu J, Huang J (2012) Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in inner Mongolia. Landscape Ecol 27(7):969–982

    CAS  Article  Google Scholar 

  37. Li T, Shilling F, Thorne J, Li F, Schott H, Boynton R, Berry A (2010) Fragmentation of China’s landscape by roads and urban areas. Landscape Ecol 25(6):839–853

    Article  Google Scholar 

  38. Liu J, Li S, Ouyang Z, Tam C, Chen X (2008) Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad Sci USA 105(28):9477–9482

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  39. Liu YY, Evans JP, McCabe MF, de Jeu RAM, van Dijk AIJM, Dolman AJ, Saizen I (2013) Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 8(2):e57599

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  40. Liu Y, Zhuang Q, Miralles D, Pan Z, Kicklighter D, Zhu Q, He Y, Chen J, Tchebakova N, Sirin A, Niyogi D, Melillo J (2015) Evapotranspiration in Northern Eurasia: impact of forcing uncertainties on terrestrial ecosystem model estimates. J Geophys Res 120(7):2014JD022531

    Google Scholar 

  41. Ojima DS, Chuluun T (2008) Implications for land use and landscapes. In: Galvin KA, Reid RS, Behnke JRH, Hobbs NT (eds) Fragmentation in semi-arid and arid landscapes: consequences for human and natural systems. Springer, New York, pp 179–193

    Google Scholar 

  42. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938

    Article  Google Scholar 

  43. Park H-S, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J Geophys Res 115(D14):D14101

    Article  Google Scholar 

  44. Pederson N, Leland C, Nachin B, Hessl AE, Bell AR, Martin-Benito D, Saladyga T, Suran B, Brown PM, Davi NK (2013) Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket. Agric For Meteorol 178–179:10–20

    Article  Google Scholar 

  45. Pederson N, Hessl AE, Baatarbileg N, Anchukaitis KJ, Di Cosmo N (2014) Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA 111(12):4375–4379

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Piao S, Mohammat A, Fang J, Cai Q, Feng J (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Change 16(4):340–348

    Article  Google Scholar 

  47. Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178–179:31–45

    Article  Google Scholar 

  48. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509(7502):600–603

    CAS  PubMed  Article  Google Scholar 

  49. Prince SD, Wessels KJ, Tucker CJ, Nicholson SE (2007) Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Change Biol 13(7):1308–1313

    Article  Google Scholar 

  50. Qi J, Jiquan C, Shiqian W, Likun A (2012) Understanding the coupled natural and human systems in Dryland East Asia. Environ Res Lett 7(1):015202

    Article  Google Scholar 

  51. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851

    CAS  PubMed  Article  Google Scholar 

  52. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  53. Runnström MC (2000) Is Northern China winning the battle against desertification? Ambio 29(8):468–476

    Article  Google Scholar 

  54. Samanta A, Ganguly S, Vermote E, Nemani RR, Myneni RB (2012) Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000–2009. Environ Res Lett 7(2):024018

    Article  Google Scholar 

  55. Sankey TT, Sankey JB, Weber KT, Montagne C (2009) Geospatial assessment of grazing regime shifts and sociopolitical changes in a Mongolian Rangeland. Rangel Ecol Manag 62(6):522–530

    Article  Google Scholar 

  56. Scheftic W, Zeng X, Broxton P, Brunke M (2014) Intercomparison of seven NDVI products over the United States and Mexico. Remote Sens 6(2):1057

    Article  Google Scholar 

  57. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  58. Sharkhuu A, Plante A, Enkhmandal O, Casper B, Helliker B, Boldgiv B, Petraitis P (2013) Effects of open-top passive warming chambers on soil respiration in the semi-arid steppe to taiga forest transition zone in Northern Mongolia. Biogeochemistry 115(1–3):333–348

    Article  Google Scholar 

  59. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  60. Wang J, Brown D, Chen J (2013a) Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landscape Ecol 28(4):725–739

    Article  Google Scholar 

  61. Wang J, Brown DG, Agrawal A (2013b) Climate adaptation, local institutions, and rural livelihoods: a comparative study of herder communities in Mongolia and Inner Mongolia, China. Glob Environ Change 23(6):1673–1683

    Article  Google Scholar 

  62. Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271–297

    Article  Google Scholar 

  63. Wessels KJ, van den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22

    Article  Google Scholar 

  64. Wright C, de Beurs K, Henebry G (2012) Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci 6(2):177–187

    Article  Google Scholar 

  65. Xiao J, Moody A (2004) Trends in vegetation activity and their climatic correlates: China 1982–1998. Int J Remote Sens 25(24):5669–5689

    Article  Google Scholar 

  66. Xiao J, Moody A (2005) Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int J Remote Sens 26(11):2371–2390

    Article  Google Scholar 

  67. Yuan C, Liu S, Xie N (2010) The impact on chinese economic growth and energy consumption of the Global Financial Crisis: an input–output analysis. Energy 35(4):1805–1812

    Article  Google Scholar 

  68. Zhang C, Li W, Fan M (2013) Adaptation of herders to droughts and privatization of rangeland-use rights in the arid Alxa Left Banner of Inner Mongolia. J Environ Manag 126:182–190

    Article  Google Scholar 

  69. Zhao X, Hu H, Shen H, Zhou D, Zhou L, Myneni R, Fang J (2014) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecol. doi:10.1007/s10980-014-0095-y

    Google Scholar 

Download references

Acknowledgements

This study was supported by the “Dynamics of Coupled Natural and Human Systems (CNH)” Program of the NSF (#1313761), the LCLUC program of NASA (NNX14AD85G), and the Natural Science Foundation of China (31229001). J. Xiao was supported by the National Science Foundation (NSF) through Macro Systems Biology (Award Number 1065777) and NASA through the Carbon Cycle Science Program (Award Number NNX14AJ18G). We would like to thank Gabriela Shirkey for editing the manuscript. We thank the anonymous reviewers and the editor for their constructive comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjeet John.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3698 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

John, R., Chen, J., Kim, Y. et al. Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau. Landscape Ecol 31, 547–566 (2016). https://doi.org/10.1007/s10980-015-0261-x

Download citation

Keywords

  • Mongolian Plateau
  • Semi-arid
  • Vegetation indices
  • Precipitation
  • RESTREND
  • MODIS
  • EVI
  • EVI2
  • GIMMS3 g NDVI
  • Livestock density
  • Population density