Skip to main content

Seasonally varied controls of climate and phenophase on terrestrial carbon dynamics: modeling eco-climate system state using Dynamical Process Networks

Abstract

Context

Prediction of climate impacts on terrestrial ecosystems is limited by the complexity of the couplings between biosphere and atmosphere—what we define here as eco-climate. Critical transitions in ecosystem function and structure must be conceptualized, modeled, and ultimately predicted. Eco-climate system macrostate is a pattern of physical couplings between subsystems; each macrostate must be modeled differently because different physical processes are important. Critical transitions are less likely where the elasticity of macrostate is weak or absent. This motivates a fundamentally new complex systems approach.

Objective

To model eco-climate macrostate, and its elasticity to seasonal climate forcing (air temperature and precipitation) and ecosystem biophysical state (phenophase).

Methods

This Dynamical Process Network approach uses information flow to model an eco-climate system structure using timeseries observations from seven eddy-covariance tower sites in the United States. An aggregate power-law model estimates the elasticity of each location’s macrostate to seasonal climate and phenophase.

Results

Macrostate varies by both season and ecosystem type. Evergreen forests are highly elastic to air temperature and are more likely than agricultural or deciduous systems to experience state changes as the climate warms. Precipitation and phenophase elasticity is stronger in some agricultural, grassland, and deciduous forest systems.

Conclusions

Different empirical model structures are needed based on season and location, to simulate ecosystem carbon dynamics and critical state transitions. Phenophase directly controls macrostate in some ecosystems. Flux data co-located with in situ ecological monitoring are essential for eco-climate model development and prediction using complex systems approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abramowitz G, Leuning R, Clark M, Pitman A (2008) Evaluating the performance of land surface models. J Clim 21(21):5468–5481

    Article  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56(1):1–26

    Article  CAS  Google Scholar 

  • Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Change Biol 20(12):3600–3609

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Best MJ, Abramowitz G, Johnson HR et al (2015) The plumbing of land surface models: benchmarking model performance. J Hydrometeorol 16(3):1425–1442

    Article  Google Scholar 

  • Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA 106(3):826–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Boettiger C, Hastings A (2012a) Early warning signals and the prosecutor’s fallacy. Proc R Soc B 279(1748):4734–4739

    Article  PubMed  PubMed Central  Google Scholar 

  • Boettiger C, Hastings A (2012b) Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9(75):2527–2539

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonan GB (2008a) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bonan GB (2008b) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9(3):308–315

    Google Scholar 

  • Carpenter SR, Brock WA, Cole JJ, Kitchell JF, Pace ML (2008) Leading indicators of trophic cascades. Ecol Lett 11(2):128–138

    PubMed  CAS  Google Scholar 

  • Clark JS, Carpenter SR, Barber M et al (2001) Ecological forecasts: an emerging imperative. Science 293(5530):657–660

    Article  PubMed  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  PubMed  Google Scholar 

  • Cobb CW, Douglas PH (1928) A theory of production. Am Econ Rev 18(1):139–165

    Google Scholar 

  • Contamin R, Ellison AM (2009) Indicators of regime shifts in ecological systems: what do we need to know and when do we need to know it? Ecol Appl 19(3):799–816

    Article  PubMed  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A et al (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15

    Article  Google Scholar 

  • Dai L, Vorselen D, Korolev KS, Gore J (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336(6085):1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Dakos V, Carpenter SR, Brock WA et al (2012a) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7(7):e41010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dakos V, van Nes EH, D’Odorico P, Scheffer M (2012b) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93(2):264–271

    Article  PubMed  Google Scholar 

  • D’Odorico P, Ridolfi L, Laio F (2013) Precursors of state transitions in stochastic systems with delay. Theoret Ecol 6(3):265–270

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881–884

    Article  PubMed  CAS  Google Scholar 

  • Evans MR (2012) Modelling ecological systems in a changing world. Philos Trans R Soc B 367(1586):181–190

    Article  Google Scholar 

  • Felipe JAFG (2005) “A Theory of Production” the estimation of the Cobb-Douglas function: a retrospective view. East Econ J 31(3):427–446

    Google Scholar 

  • Fischlin A, Midgley GF, Price J et al (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 211–272

  • Fisher A, Hanemann M, Roberts M, Schlenker W (2007) Potential impacts of climate change on crop yields and land values in US agriculture: negative, significant, and robust. University of California, Berkeley

    Google Scholar 

  • Fisher R, McDowell N, Purves D et al (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187(3):666–681

    Article  PubMed  Google Scholar 

  • Franklin J, Davis FW, Ikegami M et al (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol 19(2):473–483

    Article  Google Scholar 

  • Garrity SR, Bohrer G, Maurer KD, Mueller KL, Vogel CS, Curtis PS (2011) A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric For Meteorol 151(12):1741–1752

    Article  Google Scholar 

  • Gong W, Yang D, Gupta HV, Nearing G (2014) Estimating information entropy for hydrological data: one-dimensional case. Water Resour Res 50(6):5003–5018

    Article  Google Scholar 

  • Gough CM, Hardiman BS, Nave LE et al (2013) Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol Appl 23(5):1202–1215

    Article  PubMed  Google Scholar 

  • Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett 11(5):450–460

    Article  PubMed  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev. Geophys. 48

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Article  PubMed  CAS  Google Scholar 

  • Held H, Kleinen T (2004) Detection of climate system bifurcations by degenerate fingerprinting. Geophys Res Lett 31(23):L23207

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12(12):2272–2281

    Article  Google Scholar 

  • Hui DF, Luo YQ, Katul G (2003) Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change. Tree Physiol 23(7):433–442

    Article  PubMed  Google Scholar 

  • Huxman TE, Turnipseed AA, Sparks JP, Harley PC, Monson RK (2003) Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia 134(4):537–546

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jones T, Cresswell W (2010) The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change? J Anim Ecol 79(1):98–108

    Article  PubMed  Google Scholar 

  • Jørgensen SE, Fath B, Bastianoni S et al (2011) A new ecology: systems perspective. Elsevier, Amsterdam

    Google Scholar 

  • Jung M, Le Maire G, Zaehle S et al (2007) Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4(4):647–656

    Article  Google Scholar 

  • Keenan TF, Baker I, Barr A et al (2012) Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob Change Biol 18(6):1971–1987

    Article  Google Scholar 

  • Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One 4(7):e6392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knuth KH (2010) Information physics: the new frontier. arXiv preprint arXiv:1009.5161

  • Knuth KH, Gotera A, Curry CT, Huyser KA, Wheeler KR, Rossow WB (2013) Revealing relationships among relevant climate variables with information theory. arXiv preprint arXiv:1311.4632

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Kumar P, Ruddell BL (2010) Information driven ecohydrologic self-organization. Entropy 12(10):2085–2096

    Article  Google Scholar 

  • le Roux PC, McGeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14(12):2950–2962

    Article  Google Scholar 

  • Lenton TM (2011) Early warning of climate tipping points. Nat Clim Change 1(4):201–209

    Article  Google Scholar 

  • Livina VN, Lenton TM (2007) A modified method for detecting incipient bifurcations in a dynamical system. Geophys Res Lett 34(3):L03712

    Article  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K et al (2008) Climate change and the future of California’s endemic flora. PLoS One 3(6):e2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loffler J, Anschlag K, Baker B et al (2011) Mountain ecosystem response to global change. Erdkunde 65(2):189–213

    Article  Google Scholar 

  • Ma SY, Baldocchi DD, Xu LK, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147(3–4):157–171

    Article  Google Scholar 

  • Medvigy D, Moorcroft PR (2012) Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philos Trans R Soc B 367(1586):222–235

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12(10):1969–1976

    Article  Google Scholar 

  • Monson RK, Turnipseed AA, Sparks JP et al (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8(5):459–478

    Article  Google Scholar 

  • Nave LE, Gough CM, Maurer KD et al (2011) Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. J Geophys Res 116:G04016

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity. WH Freeman & Company, New York

    Google Scholar 

  • Odenbaugh J (2005) Idealized, inaccurate but successful: a pragmatic approach to evaluating models in theoretical ecology. Biol Philos 20(2–3):231–255

    Article  Google Scholar 

  • Pace ML (2003) The utility of simple models in ecosystem science. In: Canham CDW, Cole J, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 49–62

    Google Scholar 

  • Pappas C, Fatichi S, Leuzinger S, Wolf A, Burlando P (2013) Sensitivity analysis of a process-based ecosystem model: pinpointing parameterization and structural issues. J Geophys Res 118(2):505–528

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669

    Article  Google Scholar 

  • Paw UKT, Falk M, Suchanek TH et al (2004) Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems 7(5):513–524

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324(5929):887–888

    Article  PubMed  CAS  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P et al (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–52

    Article  PubMed  CAS  Google Scholar 

  • Polley HW, Emmerich W, Bradford JA et al (2010) Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Glob Change Biol 16(3):990–1002

    Article  Google Scholar 

  • Quillet A, Peng CH, Garneau M (2010) Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ Rev 18:333–353

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Change Biol 13(4):788–803

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29(3):321–331

    Article  PubMed  CAS  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA et al (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Change Biol 18(2):566–584

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193):353–357

    Article  PubMed  CAS  Google Scholar 

  • Ruddell BL (2015) ProcessNetwork Version 1.4 Software. MATLAB CENTRAL. http://www.mathworks.com/matlabcentral/fileexchange/41515-processnetwork-version-1-4-software. Accessed Feb 2015

  • Ruddell BL, Kumar P (2009a) Ecohydrologic process networks: 1. Identification. Water Resour Res 45:W03419

    Google Scholar 

  • Ruddell BL, Kumar P (2009b) Ecohydrologic process networks: 2. Analysis and characterization. Water Resour Res 45:W03420

    Google Scholar 

  • Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151(1):54–68

    Article  PubMed  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA et al (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59

    Article  PubMed  CAS  Google Scholar 

  • Schmid HP, Grimmond CSB, Cropley F, Offerle B, Su HB (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103(4):357–374

    Article  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12(2):343–351

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):3–55

    Article  Google Scholar 

  • Solano R, Didan K, Jacobson A, Huete A (2010) MODIS Vegetation Index User’s Guide (MOD13 Series). http://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf. Accessed May 2014

  • Stenseth NC, Mysterud A (2002) Climate, changing phenology, and other life history and traits: nonlinearity and match-mismatch to the environment. Proc Natl Acad Sci USA 99(21):13379–13381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K et al (2013) Climate change 2013: the physical science basis. Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5). Cambridge University Press, New York

  • Syphard AD, Franklin J (2009) Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 32(6):907–918

    Article  Google Scholar 

  • Tan B, Woodcock CE, Hu J et al (2006) The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens Environ 105(2):98–114

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW et al (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396(6712):664–667

    Article  CAS  Google Scholar 

  • Toolbox EWS (2014) Early Warning Signals: time series methods. Available from http://www.early-warning-signals.org/time-series-methods/. Accessed Oct 2014

  • Torn MS, Biraud SC, Still CJ, Riley WJ, Berry JA (2011) Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains. Tellus B 63(2):181–195

    Article  CAS  Google Scholar 

  • Ulanowicz RE (1997) Ecology, the ascendent perspective. Columbia University Press, New York

    Google Scholar 

  • Villers-Ruiz L, Castaneda-Aguado D (2013) Species and plant community reorganization in the Trans-Mexican Volcanic Belt under climate change conditions. J Mt Sci 10(6):923–931

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc Roy Soc B 272(1581):2561–2569

    Article  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365(1549):2019–2024

    Article  Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  PubMed  CAS  Google Scholar 

  • Wharton S, Falk M, Bible K, Schroeder M, Paw KT (2012) Old-growth CO2 flux measurements reveal high sensitivity to climate anomalies across seasonal, annual and decadal time scales. Agric For Meteorol 161:1–14

    Article  Google Scholar 

  • Wu J (2013) Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landscape Ecol 28(1):1–11

    Article  CAS  Google Scholar 

  • Wu ZT, Koch GW, Dijkstra P, Bowker MA, Hungate BA (2011) Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient. Ecosystems 14(7):1066–1080

    Article  CAS  Google Scholar 

  • Xia J, Niu S, Ciais P et al (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc Natl Acad Sci 112(9):2788–2793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao J, Ollinger SV, Frolking S et al (2014) Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric For Meteorol 197:142–157

    Article  Google Scholar 

  • Yang B, Pallardy SG, Meyers TP et al (2010) Environmental controls on water use efficiency during severe drought in an Ozark Forest in Missouri, USA. Glob Change Biol 16(8):2252–2271

    Article  Google Scholar 

  • Yu T, Babcock BA (2011) Estimating non-linear weather impacts on corn yield: a Bayesian approach. Center for Agricultural and Rural Development, Iowa State University, Ames

    Google Scholar 

  • Zhang X, Tan B, Yu Y (2014) Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int J Biometeorol 58:547–564

    Article  PubMed  Google Scholar 

  • Zhou L, Turvey CG (2014) Climate change, adaptation and China’s grain production. China Econ Rev 28:72–89

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Nos. EF-1241960, and BCS-1026865, Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER). Dr. Minseok Kang’s contribution to this research was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2014-3030, and Weather Information Service Engine (WISE) Project, 153-3100-3133-302-350. The findings are those of the authors, and not necessarily the supporting agencies. We thank the Ameriflux and FLUXNET projects, Lawrence Berkeley National Laboratory, and specifically the teams of lead investigators Dr. Dennis Baldocchi, Dr. Peter Blanken, Dr. Gil pBohrer, Dr. Lianghong Gu, Dr. Rich Philips, Dr. Margaret Torn, and Dr. Sonia Wharton for their priceless observational work and for generously publishing their data for use in synthesis studies. Funding for the AmeriFlux Management Project was provided by the U.S. Department of Energy’s Office of Science under Contract No. DE-AC02-05CH11231. The Office of Science from the U.S. Department of Energy funded the MMS site during 2009–2011 through the Terrestrial Ecosystem Science program. The U.S. Department of Energy funds the UMBS site (DE-SC0006708). We thank Dr. Joon Kim, Dr. Michael Toomey, Dr. Koen Hufkens, Dr. Andrew Richardson, and Dr. Praveen Kumar, and the staff of the National Phenology Network and National Ecological Observatory Network for collaborative discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Ruddell.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Special issue: Macrosystems ecology: Novel methods and new understanding of multi-scale patterns and processes.

Guest Editors: S. Fei, Q. Guo, and K. Potter.

Benjamin L. Ruddell and Rong Yu have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 3471 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruddell, B.L., Yu, R., Kang, M. et al. Seasonally varied controls of climate and phenophase on terrestrial carbon dynamics: modeling eco-climate system state using Dynamical Process Networks. Landscape Ecol 31, 165–180 (2016). https://doi.org/10.1007/s10980-015-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0253-x

Keywords

  • Dynamical Process Network
  • Phenophase
  • Ecosystem modeling
  • Elasticity
  • Climate
  • Information theory